Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
use the distance formula to find the length between points, and then add them all up, like so . . .
L(AB) = √[(6 - -2)² + (2 - 2)²] = 8
L(BC) = √[(0 - 6)² + (8 - 2)²] = 8.4853
L(AC) = √[(0 - -2)² + (8 - 2)²] = 6.3246
8 + 8.4853 + 6.3246 = 14.8099
. . . answer is 14.8099 (rounded to the ten thousandths place)
L(AB) = √[(6 - -2)² + (2 - 2)²] = 8
L(BC) = √[(0 - 6)² + (8 - 2)²] = 8.4853
L(AC) = √[(0 - -2)² + (8 - 2)²] = 6.3246
8 + 8.4853 + 6.3246 = 14.8099
. . . answer is 14.8099 (rounded to the ten thousandths place)
Answer:
Perimeter of the ΔABC is 22.815 units .
Step-by-step explanation:
Formula
[tex]Distance\ formula = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
As given
The vertices of ∆ABC are A(-2, 2), B(6, 2), and C(0, 8).
Thus
[tex]AB=\sqrt{(6-(-2))^{2}+(2-2)^{2}}[/tex]
[tex]AB=\sqrt{(6+2)^{2}}[/tex]
[tex]AB=\sqrt{8^{2}}[/tex]
[tex]AB=\sqrt{64}[/tex]
[tex]\sqrt{64}=8[/tex]
AB = 8 units
[tex]BC= \sqrt{(0-6)^{2}+(8-2)^{2}}[/tex]
[tex]BC= \sqrt{(6)^{2}+(6)^{2}}[/tex]
[tex]BC= \sqrt{36+36}[/tex]
[tex]BC= \sqrt{72}[/tex]
[tex]\sqrt{72} = 8.49\ (Approx)[/tex]
BC = 8.49 units
[tex]CA = \sqrt{(-2-0)^{2}+(2-8)^{2}}[/tex]
[tex]CA = \sqrt{(-2)^{2}+(-6)^{2}}[/tex]
[tex]CA = \sqrt{4+36}[/tex]
[tex]CA = \sqrt{40}[/tex]
[tex]\sqrt{40} =6.325 \ (Approx)[/tex]
CA = 6.325 units
Total perimeter of ΔABC = AB +BC + CA
= 8 + 8.49 + 6.325
= 22.815 units
Therefore the perimeter of the ΔABC is 22.815 units .
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.