Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
[tex]A=(-4,3),B=(-1,1),C=(1,3)\\
|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}\\
|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}\\
|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5\\
L=\sqrt{13}^2+\sqrt{8}^2=13+8=21\neq5^2\neq\ R[/tex]
It's impossible to form right triangle using thes points.
It's impossible to form right triangle using thes points.
Answer:
The given points of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
Step-by-step explanation:
Given : The points (-4,3), (-1,1) and (1,3)
To find : Could the points form the vertices of a right triangle? Why or why not?
Solution :
First we find the distance between the points so that we get the length of the sides.
Let, A=(-4,3), B=(-1,1), C=(1,3)
Distance formula is
[tex]d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
The distance between point A and B
[tex]|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}[/tex]
The distance between point B and C
[tex]|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}[/tex]
The distance between point A and C
[tex]|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5[/tex]
According to property of triangle,
If the square of larger side of triangle is equating to the sum of square of smaller side [tex]a^2=b^2+c^2[/tex] the triangle is right triangle .
Larger side of the triangle is AC=5 unit and smaller sides are [tex]AB=\sqrt{13}[/tex] and [tex]BC=\sqrt{8}[/tex]
[tex]AC^2=AB^2+BC^2[/tex]
[tex]5^2=\sqrt{13}^2+\sqrt{8}^2[/tex]
[tex]25=13+8[/tex]
[tex]25\neq21[/tex]
So, The given points or the vertices of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.