Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
[tex]A=(-4,3),B=(-1,1),C=(1,3)\\
|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}\\
|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}\\
|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5\\
L=\sqrt{13}^2+\sqrt{8}^2=13+8=21\neq5^2\neq\ R[/tex]
It's impossible to form right triangle using thes points.
It's impossible to form right triangle using thes points.
Answer:
The given points of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
Step-by-step explanation:
Given : The points (-4,3), (-1,1) and (1,3)
To find : Could the points form the vertices of a right triangle? Why or why not?
Solution :
First we find the distance between the points so that we get the length of the sides.
Let, A=(-4,3), B=(-1,1), C=(1,3)
Distance formula is
[tex]d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
The distance between point A and B
[tex]|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}[/tex]
The distance between point B and C
[tex]|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}[/tex]
The distance between point A and C
[tex]|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5[/tex]
According to property of triangle,
If the square of larger side of triangle is equating to the sum of square of smaller side [tex]a^2=b^2+c^2[/tex] the triangle is right triangle .
Larger side of the triangle is AC=5 unit and smaller sides are [tex]AB=\sqrt{13}[/tex] and [tex]BC=\sqrt{8}[/tex]
[tex]AC^2=AB^2+BC^2[/tex]
[tex]5^2=\sqrt{13}^2+\sqrt{8}^2[/tex]
[tex]25=13+8[/tex]
[tex]25\neq21[/tex]
So, The given points or the vertices of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.