Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

find the distance between the points given. (0,6) and (5,12)

Sagot :

[tex]d = \sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}} \\d = \sqrt{(5 - 0)^{2} + (12 - 6)^{2}} \\d = \sqrt{(5)^{2} + (6)^{2}} \\d = \sqrt{25 + 36} \\d = \sqrt{61} \\d = 7.8 \\\\(x - h)^{2} + (y - k)^{2} = r^{2} \\(x - 5)^{2} + (y - 6)^{2} = 7.8^{2} \\(x - 5)^{2} + (y - 6)^{2} = 61 \\(h, k) = (5, 6)[/tex]
iGreen
We can plug the two points into the distance formula.

[tex]\sf~d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

(0, 6), (5, 12)
x1 y1 x2  y2

Plug in what we know:

[tex]\sf~d=\sqrt{(5-0)^2+(12-6)^2}[/tex]

Subtract:

[tex]\sf~d=\sqrt{(5)^2+(6)^2}[/tex]

Simplify the exponents:

[tex]\sf~d=\sqrt{25+36}[/tex]

Add:

[tex]\sf~d=\sqrt{61}[/tex]

Simplify the square root:

[tex]\sf~d\approx\boxed{\sf7.81}[/tex]