Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
**Refresh page if you see [ tex ]**
I am not familiar with Laplace transforms, so my explanation probably won't help, but given that for two Laplace transform [tex]F(s)[/tex] and [tex]G(s)[/tex], then [tex]\mathcal{L}^{-1}\{aF(s)+bG(s)\} = a\mathcal{L}^{-1}\{F(s)\}+b\mathcal{L}^{-1}\{G(s)\}[/tex]
Given that [tex]\dfrac{1}{s^2} = \dfrac{1!}{s^2}[/tex] and [tex]-\dfrac{48}{s^5} = -2\cdot\dfrac{4!}{s^5}[/tex]
So you have [tex]\mathcal{L}^{-1}\left\{\dfrac{1}{s^2} - 2\cdot\dfrac{4!}{s^5}\right\} = \mathcal{L}^{-1}\left\{\dfrac{1}{s^2}\right\} - 2\mathcal{L}^{-1}\left\{\dfrac{4!}{s^5}\right\}[/tex]
From Table of Laplace Transform, you have [tex]\mathcal{L}\{t^n\} = \dfrac{n!}{s^{n+1}}[/tex] and hence [tex]\mathcal{L}^{-1}\left\{\dfrac{n!}{s^{n+1}}\right\} = t^n[/tex]
So you have [tex]\mathcal{L}^{-1}\left\{\dfrac{1}{s^2}\right\} - 2\mathcal{L}^{-1}\left\{\dfrac{4!}{s^5}\right\} = \boxed{t-2t^4}[/tex].
Hope this helps...
I am not familiar with Laplace transforms, so my explanation probably won't help, but given that for two Laplace transform [tex]F(s)[/tex] and [tex]G(s)[/tex], then [tex]\mathcal{L}^{-1}\{aF(s)+bG(s)\} = a\mathcal{L}^{-1}\{F(s)\}+b\mathcal{L}^{-1}\{G(s)\}[/tex]
Given that [tex]\dfrac{1}{s^2} = \dfrac{1!}{s^2}[/tex] and [tex]-\dfrac{48}{s^5} = -2\cdot\dfrac{4!}{s^5}[/tex]
So you have [tex]\mathcal{L}^{-1}\left\{\dfrac{1}{s^2} - 2\cdot\dfrac{4!}{s^5}\right\} = \mathcal{L}^{-1}\left\{\dfrac{1}{s^2}\right\} - 2\mathcal{L}^{-1}\left\{\dfrac{4!}{s^5}\right\}[/tex]
From Table of Laplace Transform, you have [tex]\mathcal{L}\{t^n\} = \dfrac{n!}{s^{n+1}}[/tex] and hence [tex]\mathcal{L}^{-1}\left\{\dfrac{n!}{s^{n+1}}\right\} = t^n[/tex]
So you have [tex]\mathcal{L}^{-1}\left\{\dfrac{1}{s^2}\right\} - 2\mathcal{L}^{-1}\left\{\dfrac{4!}{s^5}\right\} = \boxed{t-2t^4}[/tex].
Hope this helps...
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.