Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
So,
All we have to do is subtract the smaller cone's volume from the larger cone's volume.
First, we will use the formula for the volume of a cone to find the volume of the larger cone.
[tex]V_{1} = \frac{1}{3}\pi r^2h[/tex]
Substitute.
[tex]V_{1} = \frac{1}{3}(3.14)(6)^2(18)[/tex]
Simplify exponents.
[tex]V_{1} = \frac{1}{3}(3.14)(36)(18)[/tex]
Multiply. We will do the fraction last.
[tex]V_{1} = \frac{1}{3}(113.04)(18)[/tex]
[tex]V_{1} = \frac{1}{3}(2034.72)[/tex]
[tex]V_{1} = 678.24\ cm^3[/tex]
Now, use the same formula and procedure to find the volume of the smaller cone.
[tex]V_{2} = \frac{1}{3}\pi r^2h[/tex]
[tex]V_{2} = \frac{1}{3}(3.14)(6)^2(6)[/tex]
Exponents first, and then multiplication, leaving the fraction last.
[tex]V_{2} = \frac{1}{3}(3.14)(36)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(113.04)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(678.24)[/tex]
[tex]V_{2} = 226.08\ cm^3[/tex]
Now, use this formula to find the answer:
[tex]V_{2} - V_{1} = Ans[/tex]
And substitute the now known values.
[tex]678.24 - 226.08 = Ans[/tex]
[tex]452.16\ cm^3 = Ans[/tex]
Remi must put 452.16 cubic centimeters of water into the larger container.
All we have to do is subtract the smaller cone's volume from the larger cone's volume.
First, we will use the formula for the volume of a cone to find the volume of the larger cone.
[tex]V_{1} = \frac{1}{3}\pi r^2h[/tex]
Substitute.
[tex]V_{1} = \frac{1}{3}(3.14)(6)^2(18)[/tex]
Simplify exponents.
[tex]V_{1} = \frac{1}{3}(3.14)(36)(18)[/tex]
Multiply. We will do the fraction last.
[tex]V_{1} = \frac{1}{3}(113.04)(18)[/tex]
[tex]V_{1} = \frac{1}{3}(2034.72)[/tex]
[tex]V_{1} = 678.24\ cm^3[/tex]
Now, use the same formula and procedure to find the volume of the smaller cone.
[tex]V_{2} = \frac{1}{3}\pi r^2h[/tex]
[tex]V_{2} = \frac{1}{3}(3.14)(6)^2(6)[/tex]
Exponents first, and then multiplication, leaving the fraction last.
[tex]V_{2} = \frac{1}{3}(3.14)(36)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(113.04)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(678.24)[/tex]
[tex]V_{2} = 226.08\ cm^3[/tex]
Now, use this formula to find the answer:
[tex]V_{2} - V_{1} = Ans[/tex]
And substitute the now known values.
[tex]678.24 - 226.08 = Ans[/tex]
[tex]452.16\ cm^3 = Ans[/tex]
Remi must put 452.16 cubic centimeters of water into the larger container.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.