Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
P(arrives on time given leaves on time)=
P(B | A)= P(B n A) / P(A)
= P(A n B) / P(A)
= 0.36 / 0.9
= 0.4
P(B | A)= P(B n A) / P(A)
= P(A n B) / P(A)
= 0.36 / 0.9
= 0.4
The probability that the train arrives on time, given that it leaves on time is 0.4
How to determine the probability?
The given parameters are:
- P(Leave on time) = 0.9
- P(Arrive and Leave on time) = 0.36
The required probability is calculated using:
P(Arrive on time given that it leaves on time) = P(Arrive and Leave on time)/P(Leave on time)
So, we have:
P(Arrive on time given that it leaves on time) = 0.36/0.9
Evaluate
P(Arrive on time given that it leaves on time) = 0.4
Hence, the probability that the train arrives on time, given that it leaves on time is 0.4
Read more about probability at:
https://brainly.com/question/25870256
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.