Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Means-to-MAD ratio is something that wouldn't be hard to find out, but I've certainly never even heard of it.
The mean (µ) of a set of data points is found by adding them up and dividing by the number of data points.
For our first set: [tex]\{1,\ 4.3,\ 1\}\rightarrow\frac{1+4.3+1}3=\frac{6.3}3=\boxed{2.1=\mu}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\rightarrow\frac{2+4.9+1.2}3=\frac{8.1}3=\boxed{2.7=\mu}[/tex]
The mean absolute deviation is when you find the distance of each data point from the mean and then find the mean of those distances.
For our first set: [tex]\{1,\ 4.3\ 1\}\ has\ \mu=2.1.\\distances = \{1.1,\ 3.2,\ 1.1\}\rightarrow\frac{1.1+3.2+1.1}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\ has\ \mu=2.7\\distances=\{0.7,\ 2.2,\ 2.5\}\rightarrow\frac{0.7+2.2+2.5}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
It wouldn't be hard to find the ratio between these for each set as the question asks...don't forget to put our ratio in simplest form!
For the first set: [tex]\frac{\mu}{MAD}=\frac{2.1}{1.8}=\frac{21}{18}=\boxed{\frac{7}6}[/tex]
For the second set: [tex]\frac{\mu}{MAD}=\frac{2.7}{1.8}=\frac{27}{18}=\frac{9}3=\boxed{\frac{3}1}[/tex]
(In a fraction, we would just put this as 3 because the ÷1 is redundant...however, because this is ratio, we have to keep it in)
The mean (µ) of a set of data points is found by adding them up and dividing by the number of data points.
For our first set: [tex]\{1,\ 4.3,\ 1\}\rightarrow\frac{1+4.3+1}3=\frac{6.3}3=\boxed{2.1=\mu}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\rightarrow\frac{2+4.9+1.2}3=\frac{8.1}3=\boxed{2.7=\mu}[/tex]
The mean absolute deviation is when you find the distance of each data point from the mean and then find the mean of those distances.
For our first set: [tex]\{1,\ 4.3\ 1\}\ has\ \mu=2.1.\\distances = \{1.1,\ 3.2,\ 1.1\}\rightarrow\frac{1.1+3.2+1.1}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\ has\ \mu=2.7\\distances=\{0.7,\ 2.2,\ 2.5\}\rightarrow\frac{0.7+2.2+2.5}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
It wouldn't be hard to find the ratio between these for each set as the question asks...don't forget to put our ratio in simplest form!
For the first set: [tex]\frac{\mu}{MAD}=\frac{2.1}{1.8}=\frac{21}{18}=\boxed{\frac{7}6}[/tex]
For the second set: [tex]\frac{\mu}{MAD}=\frac{2.7}{1.8}=\frac{27}{18}=\frac{9}3=\boxed{\frac{3}1}[/tex]
(In a fraction, we would just put this as 3 because the ÷1 is redundant...however, because this is ratio, we have to keep it in)
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.