Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Means-to-MAD ratio is something that wouldn't be hard to find out, but I've certainly never even heard of it.
The mean (µ) of a set of data points is found by adding them up and dividing by the number of data points.
For our first set: [tex]\{1,\ 4.3,\ 1\}\rightarrow\frac{1+4.3+1}3=\frac{6.3}3=\boxed{2.1=\mu}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\rightarrow\frac{2+4.9+1.2}3=\frac{8.1}3=\boxed{2.7=\mu}[/tex]
The mean absolute deviation is when you find the distance of each data point from the mean and then find the mean of those distances.
For our first set: [tex]\{1,\ 4.3\ 1\}\ has\ \mu=2.1.\\distances = \{1.1,\ 3.2,\ 1.1\}\rightarrow\frac{1.1+3.2+1.1}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\ has\ \mu=2.7\\distances=\{0.7,\ 2.2,\ 2.5\}\rightarrow\frac{0.7+2.2+2.5}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
It wouldn't be hard to find the ratio between these for each set as the question asks...don't forget to put our ratio in simplest form!
For the first set: [tex]\frac{\mu}{MAD}=\frac{2.1}{1.8}=\frac{21}{18}=\boxed{\frac{7}6}[/tex]
For the second set: [tex]\frac{\mu}{MAD}=\frac{2.7}{1.8}=\frac{27}{18}=\frac{9}3=\boxed{\frac{3}1}[/tex]
(In a fraction, we would just put this as 3 because the ÷1 is redundant...however, because this is ratio, we have to keep it in)
The mean (µ) of a set of data points is found by adding them up and dividing by the number of data points.
For our first set: [tex]\{1,\ 4.3,\ 1\}\rightarrow\frac{1+4.3+1}3=\frac{6.3}3=\boxed{2.1=\mu}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\rightarrow\frac{2+4.9+1.2}3=\frac{8.1}3=\boxed{2.7=\mu}[/tex]
The mean absolute deviation is when you find the distance of each data point from the mean and then find the mean of those distances.
For our first set: [tex]\{1,\ 4.3\ 1\}\ has\ \mu=2.1.\\distances = \{1.1,\ 3.2,\ 1.1\}\rightarrow\frac{1.1+3.2+1.1}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
For our second set: [tex]\{2,\ 4.9,\ 1.2\}\ has\ \mu=2.7\\distances=\{0.7,\ 2.2,\ 2.5\}\rightarrow\frac{0.7+2.2+2.5}3=\frac{5.4}3=\boxed{1.8=MAD}[/tex]
It wouldn't be hard to find the ratio between these for each set as the question asks...don't forget to put our ratio in simplest form!
For the first set: [tex]\frac{\mu}{MAD}=\frac{2.1}{1.8}=\frac{21}{18}=\boxed{\frac{7}6}[/tex]
For the second set: [tex]\frac{\mu}{MAD}=\frac{2.7}{1.8}=\frac{27}{18}=\frac{9}3=\boxed{\frac{3}1}[/tex]
(In a fraction, we would just put this as 3 because the ÷1 is redundant...however, because this is ratio, we have to keep it in)
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.