Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

if 3 shirts and 4 caps cost $96, and 2 shirts and 5 caps cost $99, how much did each cap and each shirt cost?

Sagot :

hmmm..... let us try again...but this time with a different strategy,.... by the graph method.

The system is

3x + 4y =96
2x + 5y = 99.

We find solutions of each system and then plot them on a graph.

Solutions for equation 1 = (2, 22.5) and (30, 0)
Solutions for equation 2 = (49.5 , 0) and (1, 19.4)

Now, we plot both the equations on a graph paper and note its intersecting point.

Experimentally, we find the intersecting point is (12,15)

Thus, the solution for the system is x = 12 , y = 15.


Thus, we arrive at the conclusion 1 shirt  costs 12$
1 cap costs 15$
[tex]x-cost\ of\ one\ shirt\\y-cost\ of\ one\ cap\\ \\3x+4y=\$96\ \ \ and\ \ \ 2x+5y=\$99\\ \\ \left \{ {{3x+4y=96\ /\cdot(-2)} \atop {2x+5y=99\ /\cdot(3)}} \right. \\ \\ \left \{ {{-6x-8y=-192} \atop {6x+15y=297} \right. \\ --------\\7y=105\ /:7\\\\y=15\ \ \Rightarrow\ \ 3x+4\cdot15=96\ \ \Rightarrow\ \ 3x=36\ /:3\ \ \Rightarrow\ \ x=12\\ \\Ans.\ one\ shirt\ cost\ \$12,\ \ one\ cap\ cost\ \$15[/tex]