Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Use the trigonometric identities:
[tex]\sec x= \frac{1}{\cos x} \\ \tan x= \frac{\sin x}{\cos x} \\ \sin^2 x+ \cos^2 x=1[/tex]
[tex]\sec^2 x-1=\tan^2 x \\ (\frac{1}{\cos x})^2-1=(\frac{\sin x}{\cos x})^2 \\ \frac{1}{\cos^2 x}-1 = \frac{\sin^2 x }{\cos^2 x} \ \ \ |\times \cos^2 x \\ 1-\cos^2 x=\sin^2 x \ \ \ |+\cos^2 x \\ \sin^2x+\cos^2x=1 \\ \boxed{\hbox{true}}[/tex]
[tex]\sec x= \frac{1}{\cos x} \\ \tan x= \frac{\sin x}{\cos x} \\ \sin^2 x+ \cos^2 x=1[/tex]
[tex]\sec^2 x-1=\tan^2 x \\ (\frac{1}{\cos x})^2-1=(\frac{\sin x}{\cos x})^2 \\ \frac{1}{\cos^2 x}-1 = \frac{\sin^2 x }{\cos^2 x} \ \ \ |\times \cos^2 x \\ 1-\cos^2 x=\sin^2 x \ \ \ |+\cos^2 x \\ \sin^2x+\cos^2x=1 \\ \boxed{\hbox{true}}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.