Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which type of triangle is formed with the points A(1, 7), B(-2, 2), and C(4, 2) as its vertices?

Sagot :

ddk
We will have to use the distance formula in order to determine the lengths of each side of the triangle.

Distance formula: [tex] \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} } [/tex]

Let's calculate AB first:
A (1, 7) and B (-2, 2)
A: x1 = 1 and y1 = 7
B: x2 = -2 and y2 = 2

so
[tex] \sqrt{(-2 - 1)^{2} + (2 - 7)^{2} } [/tex]
[tex] \sqrt{(-3)^{2} + (-5)^{2} } [/tex]
[tex] \sqrt{9 + 25 } [/tex]
AB = [tex] \sqrt{34} [/tex] or (rounded to the nearest tenth) ≈ 5.8

Now let's do BC:
B: x1 = -2 and y1 = 2
C: x2 = 4 and y2 = 2

So
[tex]\sqrt{(4 - -2)^{2} + (2 - 2)^{2} }[/tex]
[tex]\sqrt{(6)^{2} + (0)^{2} }[/tex]
BC = [tex]\sqrt{36 }[/tex] or 6

Now let's do CA
C: x1 = 4 and y1 = 2
A: x2 = 1 and y2 = 7

So
[tex] \sqrt{(1 - 4)^{2} + (7 - 2)^{2} } [/tex]
[tex] \sqrt{(-3)^{2} + (5)^{2} } [/tex]
[tex] \sqrt{9 + 25}[/tex]
CA = [tex]\sqrt{34}[/tex] or (rounded to the nearest tenth) ≈ 5.8

So let's recap:

AB ≈ 5.8
BC = 6
CA ≈ 5.8

So AB and AC are the same length while BC is .2 units longer which means this is an isosceles triangle.

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.