Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Polar coordinates give the distance from the origin and the angle from the positive x axis. Cartesian coordinates give the distance from the x and y axes.
You can draw a right triangle with these values. (see attached)
If you know the r value and theta of that triangle below, you can use trig to find x and y.
Let's convert (4, 16°) to Cartesian coordinates.
Note that since our angle is acute, (in Quadrant I) our sine and cosine will both be positive, as you should be able to derive from the unit circle, where cosine is represented as an x value and sine is represented as a y value.
cosine = adjacent / hypotenuse
cosθ = x/r
cos(16°) = x/4
4cos(16°) = x ≈ 3.84504678375
sine = oppsite / hypotenuse
sinθ = y/r
sin(16°) = y/4
4sin(16°) = y ≈ 1.10254942327
So (4, 16°) ⇒ (3.84504678375, 1.10254942327).
Let's convert (-2, 177°) to Cartesian coordinates.
Whenever you have a negative radius, that means to put the point opposite where it would have been if it had a positive radius. (see attached)
In that case, we can essentially add 180° to our current 177° to the same effect. That means that (-2, 177°) = (2, 357°).
Note that since our angle is in Quadrant IV, our cosine will be positive, but our sine will be negative. (as derived from the unit circle) We don't have to worry about this since our calculator figures this for us, but you should pay attention to it if you are converting from Cartesian to polar.
cosine = adjacent / hypotenuse
cosθ = x/r
cos(357°) = x/2
2cos(357°) = x ≈ 1.99725906951
sine = opposite / hypotenuse
sinθ = y/r
sin(357°) = y/2
2sin(357°) = y ≈ -0.10467191248
So (-2, 177°) ⇒ (1.99725906951, -0.10467191248).
Now we must use the distance formula with our two points.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d\approx\sqrt{(1.99725906951-3.84504678375)^2+(-0.10467191248-1.10254942327)^2}[/tex]
[tex]d\approx\sqrt{-1.84778771^2+-1.20722134^2}[/tex]
[tex]d\approx\sqrt{3.41431942+1.45738336}[/tex]
[tex]d\approx\sqrt{4.87170278}[/tex]
[tex]\boxed{d\approx2.20719342}[/tex]
You can draw a right triangle with these values. (see attached)
If you know the r value and theta of that triangle below, you can use trig to find x and y.
Let's convert (4, 16°) to Cartesian coordinates.
Note that since our angle is acute, (in Quadrant I) our sine and cosine will both be positive, as you should be able to derive from the unit circle, where cosine is represented as an x value and sine is represented as a y value.
cosine = adjacent / hypotenuse
cosθ = x/r
cos(16°) = x/4
4cos(16°) = x ≈ 3.84504678375
sine = oppsite / hypotenuse
sinθ = y/r
sin(16°) = y/4
4sin(16°) = y ≈ 1.10254942327
So (4, 16°) ⇒ (3.84504678375, 1.10254942327).
Let's convert (-2, 177°) to Cartesian coordinates.
Whenever you have a negative radius, that means to put the point opposite where it would have been if it had a positive radius. (see attached)
In that case, we can essentially add 180° to our current 177° to the same effect. That means that (-2, 177°) = (2, 357°).
Note that since our angle is in Quadrant IV, our cosine will be positive, but our sine will be negative. (as derived from the unit circle) We don't have to worry about this since our calculator figures this for us, but you should pay attention to it if you are converting from Cartesian to polar.
cosine = adjacent / hypotenuse
cosθ = x/r
cos(357°) = x/2
2cos(357°) = x ≈ 1.99725906951
sine = opposite / hypotenuse
sinθ = y/r
sin(357°) = y/2
2sin(357°) = y ≈ -0.10467191248
So (-2, 177°) ⇒ (1.99725906951, -0.10467191248).
Now we must use the distance formula with our two points.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d\approx\sqrt{(1.99725906951-3.84504678375)^2+(-0.10467191248-1.10254942327)^2}[/tex]
[tex]d\approx\sqrt{-1.84778771^2+-1.20722134^2}[/tex]
[tex]d\approx\sqrt{3.41431942+1.45738336}[/tex]
[tex]d\approx\sqrt{4.87170278}[/tex]
[tex]\boxed{d\approx2.20719342}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.