Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find all integers n for which n^2+6n-27 is a prime number? Please tell me how you did it.

Sagot :

[tex]n^2+6n-27=\\ n^2-3n+9n-27=\\ n(n-3)+9(n-3)=\\ (n+9)(n-3)[/tex]
For the above product to be a prime number, one of the factors must be a prime number and the other must be equal to 1.

[tex]n+9=1\\ n=-8\\\\ -8-3=-11[/tex]
The first factor is equal 1 for [tex]n=-8[/tex], but the other is euqal -11, which is not a prime number.

[tex]n-3=1\\ n=4\\\\ 4+9=13[/tex]
The second factor is equal 1 for [tex]n=4[/tex] and the first factor is equal 13, which is a prime number.

So, [tex]n^2+6n-27[/tex] is a prime number for [tex]n=4[/tex]