Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If sin theta = (sqrt 3)/2, which could not be the value of theta? A. 60 degrees B. 120 degrees C. 240 degrees D. 420 degrees I know that the solutions for theta are pi/3 and 2pi/3, but how does that correlate?

Sagot :

Your are right, [tex] \pi /3[/tex] and 2[tex] \pi /3[/tex] are solutions.
Of course each of these solutions can be replaced by the same number +k2[tex] \pi [/tex] (with k being an element of Z) since sin x=sin (x+k2[tex] \pi [/tex]) with k being an element of Z. 
Those are angle measures expressed in radians.
If you translate in degrees you basically have to know that  [tex] \pi [/tex] radian=180 degrees
so [tex] \pi /3[/tex] radian=60 degrees and 2[tex] \pi /3[/tex]=120 degrees. So this two could be values of theta (A and B).
On top of that [tex] \pi /3+2 \pi [/tex] could also be a solution (x+k2[tex] \pi [/tex] with k=1). This can be translated to 60+360=420 degrees which is solution D.
So C. 240 degrees is the only one that could not be a value of theta.