Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A box with mass (m) it's sliding along on a friction-free surface at 9.87 m/s at a height of 1.81 meters. It travels down the hill and then up another hill.
a. Find the speed at the bottom of the hill
b. Find the maximum vertical history which the box will rose on the opposite hill.


Sagot :

A) The answer is 11.53 m/s

The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi

Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²

Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h

So:
KEf = KEi + PEi
1/2 m * vf² =  1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² =  1/2 vi² + a * h

We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m

1/2 vf² =  1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s


b) The answer is 6.78 m

The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE

Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²

Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h

KE = PE
1/2 m * v² = m * a * h

Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s² 
h = ?

1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m