Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
1>
Let the base be "x"
According to the question,
h = x - 13
A = 24 in sq.
Now,
[tex] Area of triangle = \frac{1}{2}~b~h [/tex]
[tex]24= \frac{1}{2}(x)(x-13) [/tex]
[tex]24 *2= (x)(x-13) [/tex]
[tex]48= x^{2} - 13x[/tex]
[tex]0= x^{2} - 13x -48[/tex]
Factorizing the equation, x² - 13x -48, we get,
[tex]0= x^{2}+3x - 16x -48[/tex]
[tex]0= x(x+3) - 16(x+3)[/tex]
[tex]0= (x + 3)(x-16)[/tex]
NOW, using zero product property, we get,
Either,
x + 3 = 0
x = -3
Or,
x - 16 = 0
x = 16
Since, distance can't be negative, we have, x = 16 in.
So, the length of the base is 16 inches.
2>
umm...i don't know how to do it...can you post a picture of the same kind of (solved) question....i mean like an example
Let the base be "x"
According to the question,
h = x - 13
A = 24 in sq.
Now,
[tex] Area of triangle = \frac{1}{2}~b~h [/tex]
[tex]24= \frac{1}{2}(x)(x-13) [/tex]
[tex]24 *2= (x)(x-13) [/tex]
[tex]48= x^{2} - 13x[/tex]
[tex]0= x^{2} - 13x -48[/tex]
Factorizing the equation, x² - 13x -48, we get,
[tex]0= x^{2}+3x - 16x -48[/tex]
[tex]0= x(x+3) - 16(x+3)[/tex]
[tex]0= (x + 3)(x-16)[/tex]
NOW, using zero product property, we get,
Either,
x + 3 = 0
x = -3
Or,
x - 16 = 0
x = 16
Since, distance can't be negative, we have, x = 16 in.
So, the length of the base is 16 inches.
2>
umm...i don't know how to do it...can you post a picture of the same kind of (solved) question....i mean like an example
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.