Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

The GRE is an entrance exam that most students are required to take upon entering graduate school. In 2014, the combined scores for the Verbal and Quantitative sections were approximately normally distributed with a mean of 310 and a standard deviation of 12.

What percent of scores were between 286 and 322? Round your answer to the nearest whole number.

Sagot :

The GRE Scores are represented as ~N(310,12)

In order to find the proportion of scores between 286 and 322, we need to standardize the scores so we can use the standard normal probabilities. Thus, we will find the z-score.
[tex]z-score = \frac{286 - 310}{12} = -2[/tex]
[tex]z-score = \frac{322 - 310}{12} = 1 [/tex]

By looking on the standard normal probabilities table, we find the proportion of scores less than -2.
P(z < -2) = 0.0228
Then, we find the proportion of scores less than 1.
P(z < 1) = 0.8413

To find the proportion between -2 and 1, we subtract the two.
P(-2 < z < 1) = 0.8413 - 0.0228 = 0.8185 = 81.85%

Therefore, 82% of scores are between 286 and 322


Answer:82% of scores are between 286 and 322

Step-by-step explanation:

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.