Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The GRE Scores are represented as ~N(310,12)
In order to find the proportion of scores between 286 and 322, we need to standardize the scores so we can use the standard normal probabilities. Thus, we will find the z-score.
[tex]z-score = \frac{286 - 310}{12} = -2[/tex]
[tex]z-score = \frac{322 - 310}{12} = 1 [/tex]
By looking on the standard normal probabilities table, we find the proportion of scores less than -2.
P(z < -2) = 0.0228
Then, we find the proportion of scores less than 1.
P(z < 1) = 0.8413
To find the proportion between -2 and 1, we subtract the two.
P(-2 < z < 1) = 0.8413 - 0.0228 = 0.8185 = 81.85%
Therefore, 82% of scores are between 286 and 322
In order to find the proportion of scores between 286 and 322, we need to standardize the scores so we can use the standard normal probabilities. Thus, we will find the z-score.
[tex]z-score = \frac{286 - 310}{12} = -2[/tex]
[tex]z-score = \frac{322 - 310}{12} = 1 [/tex]
By looking on the standard normal probabilities table, we find the proportion of scores less than -2.
P(z < -2) = 0.0228
Then, we find the proportion of scores less than 1.
P(z < 1) = 0.8413
To find the proportion between -2 and 1, we subtract the two.
P(-2 < z < 1) = 0.8413 - 0.0228 = 0.8185 = 81.85%
Therefore, 82% of scores are between 286 and 322
Answer:82% of scores are between 286 and 322
Step-by-step explanation:
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.