Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
x⁴-13x²+36
(x²-4)(x²-9)
x²=4. | x²=9
x=√4. |x=√9
x=2. |x=3
27x³-8=0
x³=8/27
x=2/3
...
-------------------
(x²-4)(x²-9)
x²=4. | x²=9
x=√4. |x=√9
x=2. |x=3
27x³-8=0
x³=8/27
x=2/3
...
-------------------
[tex]Solve\ x^4-13x^2=-36.[/tex]
View this equation as a quadratic like so:
[tex]x^2(x^2)-13x(x)+36=0[/tex]
We can factor just like a normal quadartic!
We want two numbers that multiply to 36x² and add to -13x.
These numbers are -9x and -4x.
Because our leading coefficient is 1, we can factor straight to (x²-4)(x²-9).
Here's what it would look like if we split the middle and factored:
[tex]x^4-9x^2-4x^2+36=0\\x^2(x^2-9)-4(x^2-9)=0\\(x^2-4)(x^2-9)=0[/tex]
Of course, any value which causes either factor to equal zero is a solution.
The other factor times zero is still going to be zero, of course.
Let's derive these two possibilities from our equation.
[tex]x^2-4=0,\ or\ x^2-9=0[/tex]
We can add that constant to the right side...
[tex]x^2=4,\ or\ x^2=9[/tex]
And take the square root of each side.
[tex]\boxed{x=\pm2\ or\ \pm3}[/tex]
So, your possible x values are
2, -2, 3, and -3.
View this equation as a quadratic like so:
[tex]x^2(x^2)-13x(x)+36=0[/tex]
We can factor just like a normal quadartic!
We want two numbers that multiply to 36x² and add to -13x.
These numbers are -9x and -4x.
Because our leading coefficient is 1, we can factor straight to (x²-4)(x²-9).
Here's what it would look like if we split the middle and factored:
[tex]x^4-9x^2-4x^2+36=0\\x^2(x^2-9)-4(x^2-9)=0\\(x^2-4)(x^2-9)=0[/tex]
Of course, any value which causes either factor to equal zero is a solution.
The other factor times zero is still going to be zero, of course.
Let's derive these two possibilities from our equation.
[tex]x^2-4=0,\ or\ x^2-9=0[/tex]
We can add that constant to the right side...
[tex]x^2=4,\ or\ x^2=9[/tex]
And take the square root of each side.
[tex]\boxed{x=\pm2\ or\ \pm3}[/tex]
So, your possible x values are
2, -2, 3, and -3.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.