Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
ΔRST ≡ ΔABC
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
In any statement like this one: [tex]\triangle RST \cong \triangle ABC[/tex] you can assume that the points match up in the order that you are given them.
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.