Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
ΔRST ≡ ΔABC
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
In any statement like this one: [tex]\triangle RST \cong \triangle ABC[/tex] you can assume that the points match up in the order that you are given them.
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.