Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
ΔRST ≡ ΔABC
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
<R = <A
(5x + 30)° = (x² - 8x)°
5x + 30 = x² - 8x
-x² + 5x + 30 = x² - x² - 8x
-x² + 5x + 30 = -8x
+ 8x + 8x
-x² + 13x + 30 = 0
x = -(13) ± √((13)² - 4(-1)(30))
2(-1)
x = -13 ± √(169 + 120)
-2
x = -13 ± √(289)
-2
x = -13 ± 17
-2
x = -13 + 17 U x = -13 - 17
-2 -2
x = 4 U x = -30
-2 -2
x = -2 x = 25
<C = 4x - 5 U <C = 4x - 5
<C = 4(-2) - 5 U <C = 4(25) - 5
<C = -8 - 5 U <C = 100 - 5
<C = -13° U <C = 95°
or
ΔRST ≡ ΔABC
<A + <C = <R
(x² - 8x)°+ (4x - 5)° = (5x + 30)°
(x² - 8x) + (4x - 5) = (5x + 30)
(x² - 8x + 4x - 5) = (5x + 30)
x² - 4x - 5 = 5x + 30
- 5x - 5x
x² - 9x - 5 = 30
- 30 - 30
x² - 9x - 35 = 0
x = -(-9) ± √((-9)² - 4(1)(-35))
2(1)
x = 9 ± √(81 + 140)
2
x = 9 ± √(221)
2
x = 9 ± 14.86
2
x = 9 + 14.86 U x = 9 - 14.86
2 2
x = 23.86 U x = -4.14
2 2
x = 11.93 U x = -2.07
In any statement like this one: [tex]\triangle RST \cong \triangle ABC[/tex] you can assume that the points match up in the order that you are given them.
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
This means that [tex]\angle A \cong \angle R[/tex].
We know that [tex]m\angle A = x^2-8x[/tex] and [tex]m\angle R=5x+30[/tex], and because they are congruent we can set the two equal to each other.
[tex]x^2-8x=5x+30[/tex]
Let's get everything to one side.
[tex]x^2-13x-30=0[/tex]
Let's solve by factoring, since it's easy to do with these whole numbers.
We're looking for two number thats add to -30 and multiply to -13...
These would be -15 and 2.
Since our leading coefficient (_x²) is 1, we can factor straight to (x-15)(x+2).
Here's what it would look like if you went through all the steps anyways, though.
[tex]x^2-15x+2x-30=0[/tex]
[tex]x(x-15)+2(x-15)=0[/tex]
[tex](x+2)(x-15)=0[/tex]
Any value which causes either factor to equal 0 is a solution.
(The second factor wouldn't matter b/c 0 times anything is still 0)
Therefore x = -2 or 15.
Only one of these is possible, however!
If you use x = -2, you will find that the angle measure 4x-5 is negative, which is impossible. In this case, x must be 15.
Let's find the measure of angle C.
[tex]m\angle C=4x-5\ where\ x=15\\m\angle C=4(15)-5\\m\angle C=60-5\\\boxed{m\angle C = 55\°}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.