At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Okay, first, given the equation, we need to find out what the radius of the circle is. Let us state the general equation of a circle:
[tex] \frac{(x-x_{1})^2}{r^2}+ \frac{(y-y_{1})_^2}{r^2}=1[/tex]
Where [tex](x_{1}, y_{1})[/tex] is the centre of the circle. In this case, we don't need to know the centre. Just the radius.
Let us start by converting the equation into standard for, which I typed above. Divide both sides by 81.
[tex] \frac{(x-3)^2}{81}+ \frac{(y+1)^2}{81}=1[/tex]
Great! We now know the radius of the circle. It is [tex] \sqrt{81} [/tex] because it is the bottom fraction. Now we know that the radius is 9.
So now lets input this into the area of circle formula:
[tex]A=πr^2[/tex]
Now we insert our radius.
[tex]A=9^2π[/tex]
[tex]=A=81π[/tex]
You can convert that into a decimal if you wish.
Hope this helped!
~Cam943, Moderator
[tex] \frac{(x-x_{1})^2}{r^2}+ \frac{(y-y_{1})_^2}{r^2}=1[/tex]
Where [tex](x_{1}, y_{1})[/tex] is the centre of the circle. In this case, we don't need to know the centre. Just the radius.
Let us start by converting the equation into standard for, which I typed above. Divide both sides by 81.
[tex] \frac{(x-3)^2}{81}+ \frac{(y+1)^2}{81}=1[/tex]
Great! We now know the radius of the circle. It is [tex] \sqrt{81} [/tex] because it is the bottom fraction. Now we know that the radius is 9.
So now lets input this into the area of circle formula:
[tex]A=πr^2[/tex]
Now we insert our radius.
[tex]A=9^2π[/tex]
[tex]=A=81π[/tex]
You can convert that into a decimal if you wish.
Hope this helped!
~Cam943, Moderator
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.