Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Line l contains the points (3,1) and (4,4). If line m is a different line, parallel to line l in the same coordinate plane, which of the following could be the equation of line m?
a. y = 3x - 8
b. y = 1/3x - 3
c. y = -3x - 8
d. y = 3x + 1
e. y = -8x + 3


Sagot :

First you need to fine the slope
3,1
4,4
The slope with be m= 3
then put it in point slope from
y-1=3(x-3)
y-1=3x-9
y=3x-8

so the answer with be "A"

Answer:

Option D is the correct answer.

Step-by-step explanation:

Slopes of parallel lines are same. Here l and m are parallel, so their slopes must be equal.

Given two points of line l, so we can calculate slope of l.

Points are (3,1) and (4,4),

            [tex]m_l=\frac{y_2-y_1}{x_2-x_1}=\frac{4-1}{4-3}=3[/tex]

Equation of line l,

          y - y₁ = m(x-x₁)

          y - 1 = 3( x -3)

           y = 3x - 8

Slope of line line l = Slope of line line m = 3

The options are given in the form, y = mx + c

Slope of option A = 3 ( But it is the equation of line l)

Slope of option B = 1/3

Slope of option C = -3

Slope of option D = 3 ( slope is same)

Slope of option E = -8

So we can see option D is the correct answer.

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.