Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Line l contains the points (3,1) and (4,4). If line m is a different line, parallel to line l in the same coordinate plane, which of the following could be the equation of line m?
a. y = 3x - 8
b. y = 1/3x - 3
c. y = -3x - 8
d. y = 3x + 1
e. y = -8x + 3


Sagot :

First you need to fine the slope
3,1
4,4
The slope with be m= 3
then put it in point slope from
y-1=3(x-3)
y-1=3x-9
y=3x-8

so the answer with be "A"

Answer:

Option D is the correct answer.

Step-by-step explanation:

Slopes of parallel lines are same. Here l and m are parallel, so their slopes must be equal.

Given two points of line l, so we can calculate slope of l.

Points are (3,1) and (4,4),

            [tex]m_l=\frac{y_2-y_1}{x_2-x_1}=\frac{4-1}{4-3}=3[/tex]

Equation of line l,

          y - y₁ = m(x-x₁)

          y - 1 = 3( x -3)

           y = 3x - 8

Slope of line line l = Slope of line line m = 3

The options are given in the form, y = mx + c

Slope of option A = 3 ( But it is the equation of line l)

Slope of option B = 1/3

Slope of option C = -3

Slope of option D = 3 ( slope is same)

Slope of option E = -8

So we can see option D is the correct answer.