Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
a. [tex]2 x^{2} -5x-3=2 x^{2} -6x+x-3[/tex] (I'll explain how I split it in a bit)
[tex]=2x(x-3)+1(x-3)[/tex] Look for common factors between the 1st two and then the second two while trying to make sure the variables in the brackets are the same.
Now you only have to write the value in the bracket once and then join the outer factors in their own bracket so your final answer will be [tex](2 x^{2} +1)(x-3)[/tex]
For the first thing I did, I multiplied the first part of the equation by the last part= 2[tex] x^{2} [/tex] x -3=-6[tex] x^{2} [/tex]. I then proceeded to find two numbers that can be multiplied to give the result and when added will give the middle part (-5x).
Factors of -6[tex] x^{2} [/tex] are: -1x and 6x, -2x and 3x, -3x and 2x, -6x and 1x. The only ones that add up -5x are -x and 6x so that was why I used them.
b. 3x-2/2x^2-5x-3 - 1/x-3
[tex] \frac{3x-2}{2 x^{2} -5x-3}- \frac{1}{x-3} = \frac{3x-2}{(2x+1)(x-3)} - \frac{1}{x-3} [/tex]
[tex] = \frac{1(3x-2) +1(2x+1)}{(2x+1)(x-3)} [/tex]
[tex] = \frac{3x+2x-2+1}{(2x+1)(x-3) }[/tex]
=[tex] \frac{x-1}{2 x^{2} -5x-3} [/tex]
[tex]=2x(x-3)+1(x-3)[/tex] Look for common factors between the 1st two and then the second two while trying to make sure the variables in the brackets are the same.
Now you only have to write the value in the bracket once and then join the outer factors in their own bracket so your final answer will be [tex](2 x^{2} +1)(x-3)[/tex]
For the first thing I did, I multiplied the first part of the equation by the last part= 2[tex] x^{2} [/tex] x -3=-6[tex] x^{2} [/tex]. I then proceeded to find two numbers that can be multiplied to give the result and when added will give the middle part (-5x).
Factors of -6[tex] x^{2} [/tex] are: -1x and 6x, -2x and 3x, -3x and 2x, -6x and 1x. The only ones that add up -5x are -x and 6x so that was why I used them.
b. 3x-2/2x^2-5x-3 - 1/x-3
[tex] \frac{3x-2}{2 x^{2} -5x-3}- \frac{1}{x-3} = \frac{3x-2}{(2x+1)(x-3)} - \frac{1}{x-3} [/tex]
[tex] = \frac{1(3x-2) +1(2x+1)}{(2x+1)(x-3)} [/tex]
[tex] = \frac{3x+2x-2+1}{(2x+1)(x-3) }[/tex]
=[tex] \frac{x-1}{2 x^{2} -5x-3} [/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.