Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
a. [tex]2 x^{2} -5x-3=2 x^{2} -6x+x-3[/tex] (I'll explain how I split it in a bit)
[tex]=2x(x-3)+1(x-3)[/tex] Look for common factors between the 1st two and then the second two while trying to make sure the variables in the brackets are the same.
Now you only have to write the value in the bracket once and then join the outer factors in their own bracket so your final answer will be [tex](2 x^{2} +1)(x-3)[/tex]
For the first thing I did, I multiplied the first part of the equation by the last part= 2[tex] x^{2} [/tex] x -3=-6[tex] x^{2} [/tex]. I then proceeded to find two numbers that can be multiplied to give the result and when added will give the middle part (-5x).
Factors of -6[tex] x^{2} [/tex] are: -1x and 6x, -2x and 3x, -3x and 2x, -6x and 1x. The only ones that add up -5x are -x and 6x so that was why I used them.
b. 3x-2/2x^2-5x-3 - 1/x-3
[tex] \frac{3x-2}{2 x^{2} -5x-3}- \frac{1}{x-3} = \frac{3x-2}{(2x+1)(x-3)} - \frac{1}{x-3} [/tex]
[tex] = \frac{1(3x-2) +1(2x+1)}{(2x+1)(x-3)} [/tex]
[tex] = \frac{3x+2x-2+1}{(2x+1)(x-3) }[/tex]
=[tex] \frac{x-1}{2 x^{2} -5x-3} [/tex]
[tex]=2x(x-3)+1(x-3)[/tex] Look for common factors between the 1st two and then the second two while trying to make sure the variables in the brackets are the same.
Now you only have to write the value in the bracket once and then join the outer factors in their own bracket so your final answer will be [tex](2 x^{2} +1)(x-3)[/tex]
For the first thing I did, I multiplied the first part of the equation by the last part= 2[tex] x^{2} [/tex] x -3=-6[tex] x^{2} [/tex]. I then proceeded to find two numbers that can be multiplied to give the result and when added will give the middle part (-5x).
Factors of -6[tex] x^{2} [/tex] are: -1x and 6x, -2x and 3x, -3x and 2x, -6x and 1x. The only ones that add up -5x are -x and 6x so that was why I used them.
b. 3x-2/2x^2-5x-3 - 1/x-3
[tex] \frac{3x-2}{2 x^{2} -5x-3}- \frac{1}{x-3} = \frac{3x-2}{(2x+1)(x-3)} - \frac{1}{x-3} [/tex]
[tex] = \frac{1(3x-2) +1(2x+1)}{(2x+1)(x-3)} [/tex]
[tex] = \frac{3x+2x-2+1}{(2x+1)(x-3) }[/tex]
=[tex] \frac{x-1}{2 x^{2} -5x-3} [/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.