Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Aneesha travels at a rate of 50 miles per hour. Morris is traveling 3 feet per second less than Aneesha. Which is the most accurate rate of speed Morris is traveling?

1 mile = 5,280 feet


Sagot :

Answer: The rate of speed Morris is traveling is [tex]47\frac{21}{22}[/tex] miles per hour, [tex]247920[/tex] feet per hour, [tex]4132[/tex] feet per minute, or, [tex]68\frac{13}{15}[/tex] feet per second.

Step-by-step explanation:

1) In order to make sure you have an accurate equation, you need to convert the time to the same length. There are [tex]60[/tex] seconds in a minute, and [tex]60[/tex] minutes in an hour, meaning that we need to multiply [tex]3[/tex] by [tex]3600[/tex] to get the actual time difference, giving us [tex]3*3600=10800[/tex]. This means that Morris is travelling [tex]1080[/tex] feet an hour less than Aneesha.

2) Now we must attempt to convert the feet into miles, and if we can't do that, give feet, or both just in case. In order to convert feet into miles we need the total amount of feet in a mile, which is given, [tex]5280[/tex] feet. Now we divide [tex]10800[/tex] by [tex]5280[/tex] feet. This gives us, [tex]\frac{10800}{5280} =\frac{45}{22}=2\frac{1}{22}[/tex], which is a fraction, not a whole number, but might still work.

3) The answer may not be what is wanted, and could instead be the feet. in order to do this we observe that [tex]3[/tex] feet per second is less than a mile per hour. So now all we have to do is multiply [tex]5280[/tex] by [tex]49[/tex]. This gives us [tex]5280*49=258720[/tex], and subtract [tex]10800[/tex] feet, giving us [tex]258720-10800=247920[/tex].

4) Now we convert this back into feet per second, giving us [tex]\frac{247920}{3600}=68\frac{13}{15}[/tex], another unpleasant fraction! The last shot is feet per minute. We now get the equation [tex]\frac{247920}{60}=4132[/tex]. We could also go further and try for fractions of the miles, but I've done this and none of these are even. I don't know what unit they want so I will list feet per second, minute, hour, and mph.

Please mark me as Brainliest

Answer:

Morris's speed would be approximately 47.95 miles per hour or 48 miles per hour if you want to round it.

Step-by-step explanation:

Given Aneesha travels at 50 mph and Morris travels at a rate of 3 feet per second less than Anneesha, determine Morris's speed.

1 mile = 5280 feet

50(5280) = 264000 feet per hour

264000/60 = 4400 feet per minute

4400/60 = 73.333 feet per second (Aneesha)

73.333 - 3 = 70.333 feet per second (Morris)

70.333 feet x 60 seconds x 60 minutes = 253188 feet per hour

253188/5280 = 47.95227 miles per hour