Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The margin of error for this study is approximately 0.030 when rounded to the nearest thousandth.
Step-by-step explanation:
To calculate the margin of error for this study, we will use the formula for the margin of error for a proportion. The margin of error (ME) for a proportion is given by:
[tex]\[ME = Z \times \sqrt{\frac{p(1-p)}{n}}\][/tex]
where:
[tex]- \( Z \) is the Z-score corresponding to the desired confidence level.\\- \( p \) is the sample proportion.\\- \( n \) is the sample size.\\[/tex]
In this case, we need to determine the proportion of teenagers with a TV in their bedroom and then calculate the margin of error at a given confidence level (commonly 95%).
First, let's find the sample proportion p:
[tex]\[p = \frac{642}{1000} = 0.642\][/tex]
For a 95% confidence level, the Z-score Z is approximately 1.96.
Now, we can plug the values into the margin of error formula:
[tex]\[ME = 1.96 \times \sqrt{\frac{0.642 \times (1 - 0.642)}{1000}}\]\[ME = 1.96 \times \sqrt{\frac{0.642 \times 0.358}{1000}}\]\[ME = 1.96 \times \sqrt{\frac{0.229836}{1000}}\]\[ME = 1.96 \times \sqrt{0.000229836}\]\[ME = 1.96 \times 0.01516\]\[ME \approx 0.0297\][/tex]
Thus, the margin of error for this study is approximately 0.030 when rounded to the nearest thousandth.
Answer:
2.971%
Step-by-step explanation:
To determine the margin of error (MOE) for a proportion, we can use the formula for the margin of error of a proportion in a simple random sample:
[tex]MOE = z \times \sqrt{\dfrac{p(1-p)}{n}}[/tex]
where:
- z is the z-score.
- p is the sample proportion.
- n is the sample size.
In this case:
- p = 642/1000 = 0.642
- n = 1000
We will use a 95% confidence level, so the corresponding z-score is z = 1.96.
Substitute the values into the formula:
[tex]MOE = 1.96 \times \sqrt{\dfrac{0.642(1-0.642)}{1000}}\\\\\\\\MOE = 1.96 \times \sqrt{\dfrac{0.642(0.358)}{1000}}\\\\\\\\MOE = 1.96 \times \sqrt{\dfrac{0.229836}{1000}}\\\\\\\\MOE = 1.96 \times \sqrt{0.000229836}\\\\\\MOE = 1.96 \times0.015160343004\\\\\\MOE=0.029714272287...\\\\\\MOE=2.971\%\; \sf (nearest\;thousandth)[/tex]
Therefore, the margin of error for this study is 2.971%, rounded to the nearest thousandth.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.