Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]y=-\dfrac{2}{3} x+\dfrac{23}{3}[/tex]
Step-by-step explanation:
Parallel Lines
Recall that parallel lines share the same slope value.
Geometric Reasoning
Graphing two lines of the same slope and different y-intercepts produces two lines that never intersects. (Try it out on either a physical or digital graphing calculator!)
Algebraic Reasoning
Another this can be explained is by imagining a systems of equations. If two lines are parallel, they shouldn't have a solution. If we have say the equations [tex]y=2x+5[/tex] and [tex]y=2x+10[/tex], using substitution to solve the system we'd get,
[tex]2x+10=2x+5\\2x-2x=5-10\\0x=-5[/tex] ,
which there is no possible x value that can make the last equation true, thus no solutions.
So, from this example this confirms that two lines with the same slope regardless of their y-intercepts will have no solutions, implying that they're parallel.
----------------------------------------------------------------------------------------------------------
Applying what we know, if the line in this problem is parallel to the line [tex]y=-\dfrac{2}{3} x+3[/tex], then our new line must also have a slope of [tex]-\dfrac{2}{3}[/tex]!
Recalling the general format of a linear equation, [tex]y=mx+b[/tex], where in our case, y and x stays unchanged, and m is already found, all there's left is to find the y-intercept or b value.
How can we do that?
Knowing that a coordinate pair is given to us that's on our new line or is a solution to our line (plugging in the x-coordinate into the new line's equation produces its y-coordinate), we can plug their x and y values into our tentative equation, rearrange and solve for b!
[tex]3=-\dfrac{2}{3} (7)+b[/tex]
[tex]3=-\dfrac{14}{3}+b[/tex]
[tex]3+\dfrac{14}{3}=b[/tex]
[tex]\dfrac{9}{3} +\dfrac{14}{3} \\\implies \dfrac{23}{3} =b\\[/tex]
Now the linear equation of our new line is complete!
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.