At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, let's break it down step-by-step:
1. Define Variables:
- Let [tex]\(T\)[/tex] be the amount of money Tony has saved.
- Let [tex]\(S\)[/tex] be the amount of money Sarah has saved.
2. Analyze Given Information:
- The ratio of their savings is 7:11. This means for every £7 Tony has, Sarah has £11.
- Sarah has saved £24 more than Tony.
3. Express the Relationship Using the Ratio:
Since the ratio of Tony's savings to Sarah's savings is 7:11, we can write this as:
[tex]\[ \frac{T}{S} = \frac{7}{11} \][/tex]
This can be rearranged to:
[tex]\[ 11T = 7S \][/tex]
4. Utilize the Difference in Savings:
Given that Sarah has saved £24 more than Tony:
[tex]\[ S = T + 24 \][/tex]
5. Substitute and Solve:
Substitute [tex]\(S\)[/tex] from the relationship [tex]\(S = T + 24\)[/tex] into the equation [tex]\(11T = 7S\)[/tex]:
[tex]\[ 11T = 7(T + 24) \][/tex]
Now distribute and simplify:
[tex]\[ 11T = 7T + 168 \][/tex]
Combine like terms:
[tex]\[ 11T - 7T = 168 \][/tex]
[tex]\[ 4T = 168 \][/tex]
Solve for [tex]\(T\)[/tex]:
[tex]\[ T = \frac{168}{4} \][/tex]
[tex]\[ T = 42 \][/tex]
6. Find Sarah's Savings:
Substitute [tex]\(T\)[/tex] back into the equation [tex]\(S = T + 24\)[/tex]:
[tex]\[ S = 42 + 24 \][/tex]
[tex]\[ S = 66 \][/tex]
7. Calculate Total Savings:
Add Tony's savings and Sarah's savings to find the total savings:
[tex]\[ \text{Total savings} = T + S \][/tex]
[tex]\[ \text{Total savings} = 42 + 66 \][/tex]
[tex]\[ \text{Total savings} = 108 \][/tex]
So, the total amount Tony and Sarah have saved together is £108.
1. Define Variables:
- Let [tex]\(T\)[/tex] be the amount of money Tony has saved.
- Let [tex]\(S\)[/tex] be the amount of money Sarah has saved.
2. Analyze Given Information:
- The ratio of their savings is 7:11. This means for every £7 Tony has, Sarah has £11.
- Sarah has saved £24 more than Tony.
3. Express the Relationship Using the Ratio:
Since the ratio of Tony's savings to Sarah's savings is 7:11, we can write this as:
[tex]\[ \frac{T}{S} = \frac{7}{11} \][/tex]
This can be rearranged to:
[tex]\[ 11T = 7S \][/tex]
4. Utilize the Difference in Savings:
Given that Sarah has saved £24 more than Tony:
[tex]\[ S = T + 24 \][/tex]
5. Substitute and Solve:
Substitute [tex]\(S\)[/tex] from the relationship [tex]\(S = T + 24\)[/tex] into the equation [tex]\(11T = 7S\)[/tex]:
[tex]\[ 11T = 7(T + 24) \][/tex]
Now distribute and simplify:
[tex]\[ 11T = 7T + 168 \][/tex]
Combine like terms:
[tex]\[ 11T - 7T = 168 \][/tex]
[tex]\[ 4T = 168 \][/tex]
Solve for [tex]\(T\)[/tex]:
[tex]\[ T = \frac{168}{4} \][/tex]
[tex]\[ T = 42 \][/tex]
6. Find Sarah's Savings:
Substitute [tex]\(T\)[/tex] back into the equation [tex]\(S = T + 24\)[/tex]:
[tex]\[ S = 42 + 24 \][/tex]
[tex]\[ S = 66 \][/tex]
7. Calculate Total Savings:
Add Tony's savings and Sarah's savings to find the total savings:
[tex]\[ \text{Total savings} = T + S \][/tex]
[tex]\[ \text{Total savings} = 42 + 66 \][/tex]
[tex]\[ \text{Total savings} = 108 \][/tex]
So, the total amount Tony and Sarah have saved together is £108.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.