Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's break down the solution step-by-step:
1. Identify the Given Values:
- Altitude of the pyramid (height from the apex to the base) is 9 cm.
- Side length of the base hexagon is 3 cm.
- Distance from the base to the horizontal cross-section (height at which the cross-section is taken) is 5 cm.
2. Determine the Height from the Apex to the Cross-Section:
- Since the cross-section is 5 cm above the base, the height from the apex to the cross-section is [tex]\(9 \text{ cm} - 5 \text{ cm} = 4 \text{ cm}\)[/tex].
3. Calculate the Scale Factor:
- The scale factor for similar triangles is the ratio of the height from the apex to the cross-section to the total height of the pyramid.
- Hence, the scale factor is:
[tex]\[ \text{Scale Factor} = \frac{\text{Height from apex to cross-section}}{\text{Total height}} = \frac{4}{9} \approx 0.4444 \][/tex]
4. Determine the Side Length of the Hexagon in the Cross-Section:
- The side length of the hexagon in the cross-section is scaled by the same factor as the height.
- Therefore, the side length of the cross-section hexagon is:
[tex]\[ \text{Cross-Section Side} = \text{Base Side} \times \text{Scale Factor} = 3 \text{ cm} \times 0.4444 \approx 1.3333 \text{ cm} \][/tex]
5. Calculate the Area of the Hexagon:
- The formula to calculate the area of a regular hexagon with side length [tex]\( a \)[/tex] is:
[tex]\[ \text{Area} = \frac{3 \sqrt{3}}{2} \times a^2 \][/tex]
- Substituting [tex]\( a = 1.3333 \text{ cm} \)[/tex] into this formula, we get:
[tex]\[ \text{Area} \approx \frac{3 \sqrt{3}}{2} \times (1.3333)^2 \approx 4.6188 \text{ cm}^2 \][/tex]
Thus, the area of the horizontal cross-section 5 cm above the base is approximately [tex]\( 4.6188 \text{ cm}^2 \)[/tex].
1. Identify the Given Values:
- Altitude of the pyramid (height from the apex to the base) is 9 cm.
- Side length of the base hexagon is 3 cm.
- Distance from the base to the horizontal cross-section (height at which the cross-section is taken) is 5 cm.
2. Determine the Height from the Apex to the Cross-Section:
- Since the cross-section is 5 cm above the base, the height from the apex to the cross-section is [tex]\(9 \text{ cm} - 5 \text{ cm} = 4 \text{ cm}\)[/tex].
3. Calculate the Scale Factor:
- The scale factor for similar triangles is the ratio of the height from the apex to the cross-section to the total height of the pyramid.
- Hence, the scale factor is:
[tex]\[ \text{Scale Factor} = \frac{\text{Height from apex to cross-section}}{\text{Total height}} = \frac{4}{9} \approx 0.4444 \][/tex]
4. Determine the Side Length of the Hexagon in the Cross-Section:
- The side length of the hexagon in the cross-section is scaled by the same factor as the height.
- Therefore, the side length of the cross-section hexagon is:
[tex]\[ \text{Cross-Section Side} = \text{Base Side} \times \text{Scale Factor} = 3 \text{ cm} \times 0.4444 \approx 1.3333 \text{ cm} \][/tex]
5. Calculate the Area of the Hexagon:
- The formula to calculate the area of a regular hexagon with side length [tex]\( a \)[/tex] is:
[tex]\[ \text{Area} = \frac{3 \sqrt{3}}{2} \times a^2 \][/tex]
- Substituting [tex]\( a = 1.3333 \text{ cm} \)[/tex] into this formula, we get:
[tex]\[ \text{Area} \approx \frac{3 \sqrt{3}}{2} \times (1.3333)^2 \approx 4.6188 \text{ cm}^2 \][/tex]
Thus, the area of the horizontal cross-section 5 cm above the base is approximately [tex]\( 4.6188 \text{ cm}^2 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.