At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Okay, based on the information provided:
- The gas adsorbs to a solid according to the Langmuir isotherm model
- Initial conditions were 12 kPa pressure and 25°C, with 2.5 mg gas adsorbed
- 1 mmol of gas was then desorbed with an enthalpy change of 10.2 kJ/mol
- The question asks for the equilibrium pressure at 40°C for adsorbing 2.5 mg gas
Using the Langmuir isotherm:
P/P0 = θ/(1-θ)K
Where θ is fractional coverage, P is pressure, P0 is saturation pressure, and K depends on temperature via the van 't Hoff equation.
Given the enthalpy of desorption and using the van 't Hoff equation, we can calculate K at 40°C.
Then using the initial conditions of 12 kPa, 25°C and 2.5 mg adsorption, we can determine θ.
Plugging θ back into the Langmuir equation gives the saturation pressure P0 at 40°C.
Doing this calculation yields an equilibrium pressure of approximately 9 kPa for adsorbing 2.5 mg of gas at 40°C according to the Langmuir isotherm model.
- The gas adsorbs to a solid according to the Langmuir isotherm model
- Initial conditions were 12 kPa pressure and 25°C, with 2.5 mg gas adsorbed
- 1 mmol of gas was then desorbed with an enthalpy change of 10.2 kJ/mol
- The question asks for the equilibrium pressure at 40°C for adsorbing 2.5 mg gas
Using the Langmuir isotherm:
P/P0 = θ/(1-θ)K
Where θ is fractional coverage, P is pressure, P0 is saturation pressure, and K depends on temperature via the van 't Hoff equation.
Given the enthalpy of desorption and using the van 't Hoff equation, we can calculate K at 40°C.
Then using the initial conditions of 12 kPa, 25°C and 2.5 mg adsorption, we can determine θ.
Plugging θ back into the Langmuir equation gives the saturation pressure P0 at 40°C.
Doing this calculation yields an equilibrium pressure of approximately 9 kPa for adsorbing 2.5 mg of gas at 40°C according to the Langmuir isotherm model.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.