Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the half-life of a reaction given that after 79.0 minutes, 39.0% of a compound has decomposed, and assuming first-order kinetics, we will follow these steps:
### Step-by-Step Solution
1. Understand the Decomposed Fraction:
- The problem states that 39.0% of the compound has decomposed after 79.0 minutes.
- Therefore, the remaining fraction of the compound is [tex]\( 1 - 0.39 = 0.61 \)[/tex].
2. First-Order Kinetics Equations:
- For a first-order reaction, the relationship between the initial quantity [tex]\( N_0 \)[/tex], the quantity after time [tex]\( t \)[/tex] [tex]\( (N) \)[/tex], and the rate constant [tex]\( k \)[/tex] is given by:
[tex]\[ \ln\left(\frac{N_0}{N}\right) = kt \][/tex]
- Considering [tex]\( N_0 \)[/tex] as the initial amount and [tex]\( N \)[/tex] as the amount remaining after time [tex]\( t \)[/tex], we have:
[tex]\[ \ln\left(\frac{N_0}{N}\right) = \ln\left(\frac{1}{0.61}\right) = kt \][/tex]
3. Calculate the Rate Constant [tex]\( k \)[/tex]:
- Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{\ln\left(\frac{1}{0.61}\right)}{t} \][/tex]
- Substituting [tex]\( t = 79.0 \)[/tex] minutes:
[tex]\[ k = \frac{\ln\left(\frac{1}{0.61}\right)}{79.0} \][/tex]
- Simplifying, we find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.006256915466009875 \, \text{min}^{-1} \][/tex]
4. Determine the Half-Life:
- The half-life ([tex]\( t_{1/2} \)[/tex]) for a first-order reaction is related to the rate constant [tex]\( k \)[/tex] by the formula:
[tex]\[ t_{1/2} = \frac{0.693}{k} \][/tex]
- Substituting the rate constant [tex]\( k \)[/tex] we calculated:
[tex]\[ t_{1/2} = \frac{0.693}{0.006256915466009875} \][/tex]
- Simplifying, we find the half-life:
[tex]\[ t_{1/2} \approx 110.75744969940213 \, \text{minutes} \][/tex]
### Conclusion
- The rate constant [tex]\( k \)[/tex] for the decomposition is approximately [tex]\( 0.006256915466009875 \, \text{min}^{-1} \)[/tex].
- The half-life of the reaction is approximately [tex]\( 110.76 \)[/tex] minutes.
### Step-by-Step Solution
1. Understand the Decomposed Fraction:
- The problem states that 39.0% of the compound has decomposed after 79.0 minutes.
- Therefore, the remaining fraction of the compound is [tex]\( 1 - 0.39 = 0.61 \)[/tex].
2. First-Order Kinetics Equations:
- For a first-order reaction, the relationship between the initial quantity [tex]\( N_0 \)[/tex], the quantity after time [tex]\( t \)[/tex] [tex]\( (N) \)[/tex], and the rate constant [tex]\( k \)[/tex] is given by:
[tex]\[ \ln\left(\frac{N_0}{N}\right) = kt \][/tex]
- Considering [tex]\( N_0 \)[/tex] as the initial amount and [tex]\( N \)[/tex] as the amount remaining after time [tex]\( t \)[/tex], we have:
[tex]\[ \ln\left(\frac{N_0}{N}\right) = \ln\left(\frac{1}{0.61}\right) = kt \][/tex]
3. Calculate the Rate Constant [tex]\( k \)[/tex]:
- Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{\ln\left(\frac{1}{0.61}\right)}{t} \][/tex]
- Substituting [tex]\( t = 79.0 \)[/tex] minutes:
[tex]\[ k = \frac{\ln\left(\frac{1}{0.61}\right)}{79.0} \][/tex]
- Simplifying, we find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.006256915466009875 \, \text{min}^{-1} \][/tex]
4. Determine the Half-Life:
- The half-life ([tex]\( t_{1/2} \)[/tex]) for a first-order reaction is related to the rate constant [tex]\( k \)[/tex] by the formula:
[tex]\[ t_{1/2} = \frac{0.693}{k} \][/tex]
- Substituting the rate constant [tex]\( k \)[/tex] we calculated:
[tex]\[ t_{1/2} = \frac{0.693}{0.006256915466009875} \][/tex]
- Simplifying, we find the half-life:
[tex]\[ t_{1/2} \approx 110.75744969940213 \, \text{minutes} \][/tex]
### Conclusion
- The rate constant [tex]\( k \)[/tex] for the decomposition is approximately [tex]\( 0.006256915466009875 \, \text{min}^{-1} \)[/tex].
- The half-life of the reaction is approximately [tex]\( 110.76 \)[/tex] minutes.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.