Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the equation step by step:
Step 1: Start with the given equation.
[tex]\[ 4\cos^2(x) = 3 \][/tex]
Step 2: Isolate [tex]\(\cos^2(x)\)[/tex].
Divide both sides of the equation by 4:
[tex]\[ \cos^2(x) = \frac{3}{4} \][/tex]
Step 3: Take the square root of both sides.
[tex]\[ \cos(x) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplify the square root expression:
[tex]\[ \cos(x) = \pm \frac{\sqrt{3}}{2} \][/tex]
Here, [tex]\(\cos(x)\)[/tex] can take on two values:
[tex]\[ \cos(x) = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Step 4: Solve for [tex]\(x\)[/tex] using the inverse cosine function (arc cosine).
For [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ x = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ x = 0.5235987755982989 \][/tex]
Since cosine is positive in the first and fourth quadrants, the other solution within [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] interval is:
[tex]\[ x = 2\pi - 0.5235987755982989 \][/tex]
[tex]\[ x = 5.759586531581287 \][/tex]
For [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ x = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ x = 2.6179938779914944 \][/tex]
Since cosine is negative in the second and third quadrants, the other solution within [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] interval is:
[tex]\[ x = 2\pi - 2.6179938779914944 \][/tex]
[tex]\[ x = 3.665191429188092 \][/tex]
Step 5: Write the general solutions considering the periodicity of the cosine function.
The cosine function has a period of [tex]\(2\pi\)[/tex], so we add multiples of [tex]\(2\pi\)[/tex] (denoted as [tex]\(2k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer) to each solution:
Therefore, the general solutions are:
[tex]\[ x = 0.5235987755982989 + 2k\pi \][/tex]
[tex]\[ x = 5.759586531581287 + 2k\pi \][/tex]
[tex]\[ x = 2.6179938779914944 + 2k\pi \][/tex]
[tex]\[ x = 3.665191429188092 + 2k\pi \][/tex]
Where [tex]\(k \in \mathbb{Z}\)[/tex] (k is any integer).
Thus, the x-intercepts of the graph [tex]\(4\cos^2(x) = 3\)[/tex] are given by these general solutions.
Step 1: Start with the given equation.
[tex]\[ 4\cos^2(x) = 3 \][/tex]
Step 2: Isolate [tex]\(\cos^2(x)\)[/tex].
Divide both sides of the equation by 4:
[tex]\[ \cos^2(x) = \frac{3}{4} \][/tex]
Step 3: Take the square root of both sides.
[tex]\[ \cos(x) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplify the square root expression:
[tex]\[ \cos(x) = \pm \frac{\sqrt{3}}{2} \][/tex]
Here, [tex]\(\cos(x)\)[/tex] can take on two values:
[tex]\[ \cos(x) = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]
Step 4: Solve for [tex]\(x\)[/tex] using the inverse cosine function (arc cosine).
For [tex]\(\cos(x) = \frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ x = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ x = 0.5235987755982989 \][/tex]
Since cosine is positive in the first and fourth quadrants, the other solution within [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] interval is:
[tex]\[ x = 2\pi - 0.5235987755982989 \][/tex]
[tex]\[ x = 5.759586531581287 \][/tex]
For [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ x = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ x = 2.6179938779914944 \][/tex]
Since cosine is negative in the second and third quadrants, the other solution within [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] interval is:
[tex]\[ x = 2\pi - 2.6179938779914944 \][/tex]
[tex]\[ x = 3.665191429188092 \][/tex]
Step 5: Write the general solutions considering the periodicity of the cosine function.
The cosine function has a period of [tex]\(2\pi\)[/tex], so we add multiples of [tex]\(2\pi\)[/tex] (denoted as [tex]\(2k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer) to each solution:
Therefore, the general solutions are:
[tex]\[ x = 0.5235987755982989 + 2k\pi \][/tex]
[tex]\[ x = 5.759586531581287 + 2k\pi \][/tex]
[tex]\[ x = 2.6179938779914944 + 2k\pi \][/tex]
[tex]\[ x = 3.665191429188092 + 2k\pi \][/tex]
Where [tex]\(k \in \mathbb{Z}\)[/tex] (k is any integer).
Thus, the x-intercepts of the graph [tex]\(4\cos^2(x) = 3\)[/tex] are given by these general solutions.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.