Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the slope of the line passing through the points (-6, 5) and (-3, 20), we need to use the slope formula. The slope of a line between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\((-6, 5)\)[/tex] as [tex]\((x_1, y_1)\)[/tex] and [tex]\((-3, 20)\)[/tex] as [tex]\((x_2, y_2)\)[/tex], we can plug these values into the formula step-by-step:
1. Identify the coordinates of the points:
- [tex]\((x_1, y_1) = (-6, 5)\)[/tex]
- [tex]\((x_2, y_2) = (-3, 20)\)[/tex]
2. Substitute these values into the slope formula:
[tex]\[ \text{slope} = \frac{20 - 5}{-3 - (-6)} \][/tex]
3. Simplify the numerator and the denominator:
- The difference in the y-coordinates (numerator) is:
[tex]\[ 20 - 5 = 15 \][/tex]
- The difference in the x-coordinates (denominator) is:
[tex]\[ -3 - (-6) = -3 + 6 = 3 \][/tex]
4. Divide the simplified numerator by the simplified denominator:
[tex]\[ \text{slope} = \frac{15}{3} = 5 \][/tex]
Therefore, the slope of the line that passes through the points (-6, 5) and (-3, 20) is:
[tex]\[ \boxed{5} \][/tex]
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\((-6, 5)\)[/tex] as [tex]\((x_1, y_1)\)[/tex] and [tex]\((-3, 20)\)[/tex] as [tex]\((x_2, y_2)\)[/tex], we can plug these values into the formula step-by-step:
1. Identify the coordinates of the points:
- [tex]\((x_1, y_1) = (-6, 5)\)[/tex]
- [tex]\((x_2, y_2) = (-3, 20)\)[/tex]
2. Substitute these values into the slope formula:
[tex]\[ \text{slope} = \frac{20 - 5}{-3 - (-6)} \][/tex]
3. Simplify the numerator and the denominator:
- The difference in the y-coordinates (numerator) is:
[tex]\[ 20 - 5 = 15 \][/tex]
- The difference in the x-coordinates (denominator) is:
[tex]\[ -3 - (-6) = -3 + 6 = 3 \][/tex]
4. Divide the simplified numerator by the simplified denominator:
[tex]\[ \text{slope} = \frac{15}{3} = 5 \][/tex]
Therefore, the slope of the line that passes through the points (-6, 5) and (-3, 20) is:
[tex]\[ \boxed{5} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.