At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the probability that the New England Colonials baseball team wins exactly 4 out of 5 randomly chosen games, we can use the binomial probability formula. The binomial probability formula is used when there are fixed trials (games), each trial has only two possible outcomes (win or lose), the probability of a win is the same for each trial, and the trials are independent.
Given:
- The probability of winning a game (p) = 0.5
- The number of games chosen (n) = 5
- The number of games won (k) = 4
The binomial probability formula is:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \][/tex]
Where:
- [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
- [tex]\( p \)[/tex] is the probability of winning a game.
- [tex]\( (1 - p) \)[/tex] is the probability of losing a game.
- [tex]\( n \)[/tex] is the total number of games.
- [tex]\( k \)[/tex] is the number of games won.
Step-by-step solution:
1. Calculate the binomial coefficient [tex]\(\binom{5}{4}\)[/tex]:
[tex]\[ \binom{5}{4} = \frac{5!}{4!(5-4)!} = \frac{5!}{4!1!} = \frac{5 \times 4!}{4! \times 1} = \frac{5}{1} = 5 \][/tex]
2. Calculate [tex]\( p^k \)[/tex]:
[tex]\[ p^k = (0.5)^4 = 0.5^4 = 0.0625 \][/tex]
3. Calculate [tex]\( (1 - p)^{n - k} \)[/tex]:
[tex]\[ (1 - p)^{n - k} = (1 - 0.5)^{5 - 4} = 0.5^1 = 0.5 \][/tex]
4. Combine these values using the binomial probability formula:
[tex]\[ P(X = 4) = \binom{5}{4} \cdot 0.5^4 \cdot 0.5 \][/tex]
[tex]\[ P(X = 4) = 5 \cdot 0.0625 \cdot 0.5 \][/tex]
5. Perform the multiplication:
[tex]\[ P(X = 4) = 5 \cdot 0.0625 \cdot 0.5 = 5 \cdot 0.03125 = 0.15625 \][/tex]
Thus, the probability that the New England Colonials will win exactly 4 out of 5 randomly chosen games is 0.156, rounded to at least three decimal places.
Given:
- The probability of winning a game (p) = 0.5
- The number of games chosen (n) = 5
- The number of games won (k) = 4
The binomial probability formula is:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \][/tex]
Where:
- [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
- [tex]\( p \)[/tex] is the probability of winning a game.
- [tex]\( (1 - p) \)[/tex] is the probability of losing a game.
- [tex]\( n \)[/tex] is the total number of games.
- [tex]\( k \)[/tex] is the number of games won.
Step-by-step solution:
1. Calculate the binomial coefficient [tex]\(\binom{5}{4}\)[/tex]:
[tex]\[ \binom{5}{4} = \frac{5!}{4!(5-4)!} = \frac{5!}{4!1!} = \frac{5 \times 4!}{4! \times 1} = \frac{5}{1} = 5 \][/tex]
2. Calculate [tex]\( p^k \)[/tex]:
[tex]\[ p^k = (0.5)^4 = 0.5^4 = 0.0625 \][/tex]
3. Calculate [tex]\( (1 - p)^{n - k} \)[/tex]:
[tex]\[ (1 - p)^{n - k} = (1 - 0.5)^{5 - 4} = 0.5^1 = 0.5 \][/tex]
4. Combine these values using the binomial probability formula:
[tex]\[ P(X = 4) = \binom{5}{4} \cdot 0.5^4 \cdot 0.5 \][/tex]
[tex]\[ P(X = 4) = 5 \cdot 0.0625 \cdot 0.5 \][/tex]
5. Perform the multiplication:
[tex]\[ P(X = 4) = 5 \cdot 0.0625 \cdot 0.5 = 5 \cdot 0.03125 = 0.15625 \][/tex]
Thus, the probability that the New England Colonials will win exactly 4 out of 5 randomly chosen games is 0.156, rounded to at least three decimal places.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.