Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
Certainly! Let’s use the empirical rule to find the percentage of scores between the mean and 5 standard deviations above the mean in a normal distribution.
Empirical Rule:
The empirical rule, also known as the 68-95-99.7 rule, provides a quick estimate of where most values lie in a normal distribution:
Approximately 68% of values fall within 1 standard deviation from the mean.
About 95% of values fall within 2 standard deviations from the mean.
Roughly 99.7% of values fall within 3 standard deviations from the mean123.
Given Information:
Mean (μ) = 36
Standard deviation (σ) = 5
Calculations:
To find the value 5 standard deviations above the mean, we can calculate:
Upper limit = μ+5σ=36+5⋅5=61
Percentage of Scores:
We want to find the percentage of scores between the mean (36) and the upper limit (61).
Since 61 is 5 standard deviations above the mean, we can use the empirical rule:
Approximately 95% of scores lie between 36 and 61 (within 2 standard deviations above the mean).
Therefore, approximately 95% of scores fall between the mean (36) and 5 standard deviations above the mean (61) in this normal distribution
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.