Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly!
Newton's Law of Universal Gravitation states that the gravitational force ([tex]\(F\)[/tex]) between two masses ([tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]) separated by a distance ([tex]\(d\)[/tex]) is given by the equation:
[tex]\[ F = \frac{G m_1 m_2}{d^2} \][/tex]
where [tex]\(G\)[/tex] is the gravitational constant.
Let's analyze what happens if we double one of the masses, say [tex]\(m_1\)[/tex].
1. Initial Gravitational Force:
We start with the initial masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(d\)[/tex]. The initial gravitational force is:
[tex]\[ F_{\text{initial}} = \frac{G m_1 m_2}{d^2} \][/tex]
2. Doubling One of the Masses:
Now, let's double the mass [tex]\(m_1\)[/tex], so the new mass becomes [tex]\(2m_1\)[/tex].
3. New Gravitational Force:
With the doubled mass, the new gravitational force becomes:
[tex]\[ F_{\text{new}} = \frac{G (2m_1) m_2}{d^2} \][/tex]
Simplifying this, we get:
[tex]\[ F_{\text{new}} = 2 \cdot \frac{G m_1 m_2}{d^2} \][/tex]
[tex]\[ F_{\text{new}} = 2 \cdot F_{\text{initial}} \][/tex]
The new gravitational force ([tex]\(F_{\text{new}}\)[/tex]) is exactly twice the initial gravitational force ([tex]\(F_{\text{initial}}\)[/tex]).
By using the given values and the gravitational constant ([tex]\(G = 6.67430 \times 10^{-11} \ \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\)[/tex]), we see:
- The initial gravitational force is [tex]\(6.6743 \times 10^{-11}\)[/tex] Newtons.
- When we double the mass [tex]\(m_1\)[/tex], the new gravitational force becomes [tex]\(2 \times 6.6743 \times 10^{-11} = 1.33486 \times 10^{-10}\)[/tex] Newtons.
Therefore, doubling one of the masses results in the gravitational force also being doubled.
Newton's Law of Universal Gravitation states that the gravitational force ([tex]\(F\)[/tex]) between two masses ([tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]) separated by a distance ([tex]\(d\)[/tex]) is given by the equation:
[tex]\[ F = \frac{G m_1 m_2}{d^2} \][/tex]
where [tex]\(G\)[/tex] is the gravitational constant.
Let's analyze what happens if we double one of the masses, say [tex]\(m_1\)[/tex].
1. Initial Gravitational Force:
We start with the initial masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(d\)[/tex]. The initial gravitational force is:
[tex]\[ F_{\text{initial}} = \frac{G m_1 m_2}{d^2} \][/tex]
2. Doubling One of the Masses:
Now, let's double the mass [tex]\(m_1\)[/tex], so the new mass becomes [tex]\(2m_1\)[/tex].
3. New Gravitational Force:
With the doubled mass, the new gravitational force becomes:
[tex]\[ F_{\text{new}} = \frac{G (2m_1) m_2}{d^2} \][/tex]
Simplifying this, we get:
[tex]\[ F_{\text{new}} = 2 \cdot \frac{G m_1 m_2}{d^2} \][/tex]
[tex]\[ F_{\text{new}} = 2 \cdot F_{\text{initial}} \][/tex]
The new gravitational force ([tex]\(F_{\text{new}}\)[/tex]) is exactly twice the initial gravitational force ([tex]\(F_{\text{initial}}\)[/tex]).
By using the given values and the gravitational constant ([tex]\(G = 6.67430 \times 10^{-11} \ \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\)[/tex]), we see:
- The initial gravitational force is [tex]\(6.6743 \times 10^{-11}\)[/tex] Newtons.
- When we double the mass [tex]\(m_1\)[/tex], the new gravitational force becomes [tex]\(2 \times 6.6743 \times 10^{-11} = 1.33486 \times 10^{-10}\)[/tex] Newtons.
Therefore, doubling one of the masses results in the gravitational force also being doubled.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.