Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the height of the plane above the ground after it has traveled 10 miles horizontally with an elevation angle of 6 degrees, follow these steps:
1. Convert the Elevation Angle to Radians:
Angles in trigonometric functions like tangent are typically expressed in radians. To convert the degrees to radians:
[tex]\[ \text{elevation\_angle\_radians} = 0.10471975511965978 \][/tex]
2. Calculate the Height Using the Tangent Function:
The tangent of the elevation angle gives the ratio of the height (opposite side) to the horizontal distance (adjacent side):
[tex]\[ \tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Rearranging to solve for height (opposite side):
[tex]\[ \text{height} = \tan(\text{elevation\_angle}) \times \text{horizontal\_distance} \][/tex]
Substitute the known values:
[tex]\[ \text{height} = \tan(0.10471975511965978) \times 10 \][/tex]
[tex]\[ \text{height} = 1.0510423526567647 \][/tex]
3. Round the Height to the Nearest Tenth:
The final step is to round the height to the nearest tenth:
[tex]\[ \text{height\_rounded} = 1.1 \][/tex]
So, the height of the plane after traveling 10 miles horizontally at an elevation angle of 6 degrees is [tex]\( \boxed{1.1} \)[/tex].
1. Convert the Elevation Angle to Radians:
Angles in trigonometric functions like tangent are typically expressed in radians. To convert the degrees to radians:
[tex]\[ \text{elevation\_angle\_radians} = 0.10471975511965978 \][/tex]
2. Calculate the Height Using the Tangent Function:
The tangent of the elevation angle gives the ratio of the height (opposite side) to the horizontal distance (adjacent side):
[tex]\[ \tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Rearranging to solve for height (opposite side):
[tex]\[ \text{height} = \tan(\text{elevation\_angle}) \times \text{horizontal\_distance} \][/tex]
Substitute the known values:
[tex]\[ \text{height} = \tan(0.10471975511965978) \times 10 \][/tex]
[tex]\[ \text{height} = 1.0510423526567647 \][/tex]
3. Round the Height to the Nearest Tenth:
The final step is to round the height to the nearest tenth:
[tex]\[ \text{height\_rounded} = 1.1 \][/tex]
So, the height of the plane after traveling 10 miles horizontally at an elevation angle of 6 degrees is [tex]\( \boxed{1.1} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.