Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the area and the circumference of a circle with a diameter of 8 cm, follow these steps:
1. Determine the radius:
- The radius ([tex]\( r \)[/tex]) is half of the diameter.
- Given the diameter ([tex]\( d \)[/tex]) is 8 cm.
- Therefore, [tex]\( r \)[/tex] = [tex]\( \frac{d}{2} \)[/tex] = [tex]\( \frac{8 \, \text{cm}}{2} \)[/tex] = 4 cm.
2. Calculate the area (A) of the circle:
- The formula for the area of a circle is [tex]\( A = \pi r^2 \)[/tex].
- Using [tex]\( \pi = 3.14 \)[/tex] and [tex]\( r = 4 \, \text{cm} \)[/tex], we substitute these values into the formula:
[tex]\( A = 3.14 \times (4 \, \text{cm})^2 \)[/tex]
- Calculate the square of the radius:
[tex]\( 4 \, \text{cm} \times 4 \, \text{cm} = 16 \, \text{cm}^2 \)[/tex]
- Multiply by [tex]\( \pi \)[/tex]:
[tex]\( 3.14 \times 16 \, \text{cm}^2 = 50.24 \, \text{cm}^2 \)[/tex]
Therefore, the area of the circle is [tex]\( 50.24 \, \text{cm}^2 \)[/tex].
3. Calculate the circumference (C) of the circle:
- The formula for the circumference of a circle is [tex]\( C = \pi d \)[/tex].
- Using [tex]\( \pi = 3.14 \)[/tex] and [tex]\( d = 8 \, \text{cm} \)[/tex], we substitute these values into the formula:
[tex]\( C = 3.14 \times 8 \, \text{cm} \)[/tex]
- Multiply [tex]\( \pi \)[/tex] by the diameter:
[tex]\( 3.14 \times 8 \, \text{cm} = 25.12 \, \text{cm} \)[/tex]
Therefore, the circumference of the circle is [tex]\( 25.12 \, \text{cm} \)[/tex].
In conclusion:
- The area of the circle is [tex]\( 50.24 \, \text{cm}^2 \)[/tex].
- The circumference of the circle is [tex]\( 25.12 \, \text{cm} \)[/tex].
1. Determine the radius:
- The radius ([tex]\( r \)[/tex]) is half of the diameter.
- Given the diameter ([tex]\( d \)[/tex]) is 8 cm.
- Therefore, [tex]\( r \)[/tex] = [tex]\( \frac{d}{2} \)[/tex] = [tex]\( \frac{8 \, \text{cm}}{2} \)[/tex] = 4 cm.
2. Calculate the area (A) of the circle:
- The formula for the area of a circle is [tex]\( A = \pi r^2 \)[/tex].
- Using [tex]\( \pi = 3.14 \)[/tex] and [tex]\( r = 4 \, \text{cm} \)[/tex], we substitute these values into the formula:
[tex]\( A = 3.14 \times (4 \, \text{cm})^2 \)[/tex]
- Calculate the square of the radius:
[tex]\( 4 \, \text{cm} \times 4 \, \text{cm} = 16 \, \text{cm}^2 \)[/tex]
- Multiply by [tex]\( \pi \)[/tex]:
[tex]\( 3.14 \times 16 \, \text{cm}^2 = 50.24 \, \text{cm}^2 \)[/tex]
Therefore, the area of the circle is [tex]\( 50.24 \, \text{cm}^2 \)[/tex].
3. Calculate the circumference (C) of the circle:
- The formula for the circumference of a circle is [tex]\( C = \pi d \)[/tex].
- Using [tex]\( \pi = 3.14 \)[/tex] and [tex]\( d = 8 \, \text{cm} \)[/tex], we substitute these values into the formula:
[tex]\( C = 3.14 \times 8 \, \text{cm} \)[/tex]
- Multiply [tex]\( \pi \)[/tex] by the diameter:
[tex]\( 3.14 \times 8 \, \text{cm} = 25.12 \, \text{cm} \)[/tex]
Therefore, the circumference of the circle is [tex]\( 25.12 \, \text{cm} \)[/tex].
In conclusion:
- The area of the circle is [tex]\( 50.24 \, \text{cm}^2 \)[/tex].
- The circumference of the circle is [tex]\( 25.12 \, \text{cm} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.