Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the average atomic mass of iodine, we need to consider the mass and relative abundance of each isotope. The average atomic mass is a weighted average of the isotopic masses, where each weight corresponds to the relative abundance of the isotope.
Here are the given isotopes and their respective abundances:
- Isotope [tex]\( ^{127}I \)[/tex] has an isotopic mass of 127 and an abundance of 80.00%.
- Isotope [tex]\( ^{126}I \)[/tex] has an isotopic mass of 126 and an abundance of 17.00%.
- Isotope [tex]\( ^{128}I \)[/tex] has an isotopic mass of 128 and an abundance of 3.00%.
### Step-by-Step Calculation:
1. Convert Percent Abundances to Fractions:
- Abundance of [tex]\( ^{127}I \)[/tex]: [tex]\( \frac{80.00}{100} = 0.80 \)[/tex]
- Abundance of [tex]\( ^{126}I \)[/tex]: [tex]\( \frac{17.00}{100} = 0.17 \)[/tex]
- Abundance of [tex]\( ^{128}I \)[/tex]: [tex]\( \frac{3.00}{100} = 0.03 \)[/tex]
2. Multiply Each Isotope’s Mass by Its Fractional Abundance:
- Contribution of [tex]\( ^{127}I \)[/tex]: [tex]\( 127 \times 0.80 = 101.60 \)[/tex]
- Contribution of [tex]\( ^{126}I \)[/tex]: [tex]\( 126 \times 0.17 = 21.42 \)[/tex]
- Contribution of [tex]\( ^{128}I \)[/tex]: [tex]\( 128 \times 0.03 = 3.84 \)[/tex]
3. Sum the Contributions to Find the Average Atomic Mass:
- Average atomic mass = [tex]\( 101.60 + 21.42 + 3.84 = 126.86 \)[/tex]
Therefore, the average atomic mass of iodine is approximately [tex]\( 126.860 \)[/tex] (rounded to three decimal places).
Here are the given isotopes and their respective abundances:
- Isotope [tex]\( ^{127}I \)[/tex] has an isotopic mass of 127 and an abundance of 80.00%.
- Isotope [tex]\( ^{126}I \)[/tex] has an isotopic mass of 126 and an abundance of 17.00%.
- Isotope [tex]\( ^{128}I \)[/tex] has an isotopic mass of 128 and an abundance of 3.00%.
### Step-by-Step Calculation:
1. Convert Percent Abundances to Fractions:
- Abundance of [tex]\( ^{127}I \)[/tex]: [tex]\( \frac{80.00}{100} = 0.80 \)[/tex]
- Abundance of [tex]\( ^{126}I \)[/tex]: [tex]\( \frac{17.00}{100} = 0.17 \)[/tex]
- Abundance of [tex]\( ^{128}I \)[/tex]: [tex]\( \frac{3.00}{100} = 0.03 \)[/tex]
2. Multiply Each Isotope’s Mass by Its Fractional Abundance:
- Contribution of [tex]\( ^{127}I \)[/tex]: [tex]\( 127 \times 0.80 = 101.60 \)[/tex]
- Contribution of [tex]\( ^{126}I \)[/tex]: [tex]\( 126 \times 0.17 = 21.42 \)[/tex]
- Contribution of [tex]\( ^{128}I \)[/tex]: [tex]\( 128 \times 0.03 = 3.84 \)[/tex]
3. Sum the Contributions to Find the Average Atomic Mass:
- Average atomic mass = [tex]\( 101.60 + 21.42 + 3.84 = 126.86 \)[/tex]
Therefore, the average atomic mass of iodine is approximately [tex]\( 126.860 \)[/tex] (rounded to three decimal places).
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.