Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

a circle is centered about the origin and its circumference passes through the point A(5,7) determine length of the radius of the circle

Sagot :

Answer:

[tex]\sqrt{74} \;or\: $\sim$\:8.6[/tex]

Step-by-step explanation:

Distance Formula

The distance between two points on a graph can be calculated using the distance formula,

                                   [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex].

Applying the Formula

The radius is the distance between the center of a circle and its circumference.

We're informed that the origin is the center and (5, 7) is on the circumference, then the radius is the distance between (0, 0) and (5, 7)!

Assigning (5, 7) to be [tex]x_2\:and\:y_2[/tex] and (0, 0) to be [tex]x_1\:and\:y_1[/tex] the distance is,

                                          [tex]\sqrt{(5-0)^2+(7-0)^2}\\\\=\sqrt{5^2+7^2} \\\\\implies \rm \sqrt{74} \: or\: 8.6[/tex].

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.