Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Use a given triangle AABC with vertices A(-3, 0), B(0, 6), and C(4, 6) to solve each
problem.
Find the equations of the three altitudes of the triangle AABC.


Sagot :

Certainly! Let's find the equations of the three altitudes of triangle [tex]\( \triangle ABC \)[/tex] with vertices [tex]\( A(-3, 0) \)[/tex], [tex]\( B(0, 6) \)[/tex], and [tex]\( C(4, 6) \)[/tex].

1. Finding the slopes of the sides:

- Slope of [tex]\( BC \)[/tex]:
Points [tex]\( B(0, 6) \)[/tex] and [tex]\( C(4, 6) \)[/tex] have the same y-coordinate, so the line is horizontal.
[tex]\[ \text{slope of } BC = 0 \][/tex]

- Slope of [tex]\( AC \)[/tex]:
Points [tex]\( A(-3, 0) \)[/tex] and [tex]\( C(4, 6) \)[/tex]:
[tex]\[ \text{slope of } AC = \frac{6 - 0}{4 - (-3)} = \frac{6}{7} \][/tex]

- Slope of [tex]\( AB \)[/tex]:
Points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(0, 6) \)[/tex]:
[tex]\[ \text{slope of } AB = \frac{6 - 0}{0 - (-3)} = \frac{6}{3} = 2 \][/tex]

2. Finding the perpendicular slopes (slopes of the altitudes):

- The perpendicular slope to [tex]\( BC \)[/tex] (horizontal line) is undefined (vertical line). This altitude must pass through point [tex]\( A(-3, 0) \)[/tex], so the line is:
[tex]\[ x = -3 \][/tex]

- The perpendicular slope to [tex]\( AC \)[/tex]:
[tex]\[ \text{perpendicular slope to } AC = -\frac{1}{\frac{6}{7}} = -\frac{7}{6} \][/tex]
Passing through point [tex]\( B(0, 6) \)[/tex], the equation is:
[tex]\[ y - 6 = -\frac{7}{6}(x - 0) \implies y = -\frac{7}{6}x + 6 \][/tex]

- The perpendicular slope to [tex]\( AB \)[/tex]:
[tex]\[ \text{perpendicular slope to } AB = -\frac{1}{2} \][/tex]
Passing through point [tex]\( C(4, 6) \)[/tex], the equation is:
[tex]\[ y - 6 = -\frac{1}{2}(x - 4) \implies y = -\frac{1}{2}x + 2 + 6 \implies y = -\frac{1}{2}x + 8 \][/tex]

3. Final equations of the altitudes:

- Altitude from [tex]\( A \)[/tex]:
[tex]\[ x = -3 \][/tex]

- Altitude from [tex]\( B \)[/tex]:
[tex]\[ y = -\frac{7}{6}x + 6 \][/tex]

- Altitude from [tex]\( C \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 8 \][/tex]

These are the equations of the three altitudes of [tex]\( \triangle ABC \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.