Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the amount of heat that must be added to raise the temperature of a cup of coffee, we need to use the formula for heat transfer in calories:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy added (in calories),
- [tex]\( m \)[/tex] is the mass of the coffee (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in cal/g.°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given the data:
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.5°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 95.6°C
- Volume of coffee = 50.0 mL
- Density of coffee = 1.00 g/mL
- Specific heat capacity ([tex]\( c \)[/tex]) = 1 cal/g.°C
First, we determine the mass of the coffee, which is equal to its volume times its density:
[tex]\[ m = 50.0 \, \text{mL} \times 1.00 \, \text{g/mL} = 50.0 \, \text{g} \][/tex]
Next, we calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 95.6°C - 20.5°C \][/tex]
[tex]\[ \Delta T = 75.1°C \][/tex]
Now, we can calculate the heat energy added ([tex]\( Q \)[/tex]) using the formula:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
[tex]\[ Q = 50.0 \, \text{g} \times 1 \, \text{cal/g.°C} \times 75.1°C \][/tex]
[tex]\[ Q = 3754.9999999999995 \, \text{cal} \][/tex]
Finally, we convert the heat energy from calories to kilocalories (since 1 kcal = 1000 cal):
[tex]\[ Q_{\text{kcal}} = \frac{Q}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = \frac{3754.9999999999995 \, \text{cal}}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = 3.7549999999999994 \, \text{kcal} \][/tex]
Therefore, the amount of heat that must be added to raise the temperature of the cup of coffee from 20.5°C to 95.6°C is approximately 3.755 kcal.
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy added (in calories),
- [tex]\( m \)[/tex] is the mass of the coffee (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in cal/g.°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given the data:
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.5°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 95.6°C
- Volume of coffee = 50.0 mL
- Density of coffee = 1.00 g/mL
- Specific heat capacity ([tex]\( c \)[/tex]) = 1 cal/g.°C
First, we determine the mass of the coffee, which is equal to its volume times its density:
[tex]\[ m = 50.0 \, \text{mL} \times 1.00 \, \text{g/mL} = 50.0 \, \text{g} \][/tex]
Next, we calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 95.6°C - 20.5°C \][/tex]
[tex]\[ \Delta T = 75.1°C \][/tex]
Now, we can calculate the heat energy added ([tex]\( Q \)[/tex]) using the formula:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
[tex]\[ Q = 50.0 \, \text{g} \times 1 \, \text{cal/g.°C} \times 75.1°C \][/tex]
[tex]\[ Q = 3754.9999999999995 \, \text{cal} \][/tex]
Finally, we convert the heat energy from calories to kilocalories (since 1 kcal = 1000 cal):
[tex]\[ Q_{\text{kcal}} = \frac{Q}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = \frac{3754.9999999999995 \, \text{cal}}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = 3.7549999999999994 \, \text{kcal} \][/tex]
Therefore, the amount of heat that must be added to raise the temperature of the cup of coffee from 20.5°C to 95.6°C is approximately 3.755 kcal.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.