Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the amount of heat that must be added to raise the temperature of a cup of coffee, we need to use the formula for heat transfer in calories:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy added (in calories),
- [tex]\( m \)[/tex] is the mass of the coffee (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in cal/g.°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given the data:
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.5°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 95.6°C
- Volume of coffee = 50.0 mL
- Density of coffee = 1.00 g/mL
- Specific heat capacity ([tex]\( c \)[/tex]) = 1 cal/g.°C
First, we determine the mass of the coffee, which is equal to its volume times its density:
[tex]\[ m = 50.0 \, \text{mL} \times 1.00 \, \text{g/mL} = 50.0 \, \text{g} \][/tex]
Next, we calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 95.6°C - 20.5°C \][/tex]
[tex]\[ \Delta T = 75.1°C \][/tex]
Now, we can calculate the heat energy added ([tex]\( Q \)[/tex]) using the formula:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
[tex]\[ Q = 50.0 \, \text{g} \times 1 \, \text{cal/g.°C} \times 75.1°C \][/tex]
[tex]\[ Q = 3754.9999999999995 \, \text{cal} \][/tex]
Finally, we convert the heat energy from calories to kilocalories (since 1 kcal = 1000 cal):
[tex]\[ Q_{\text{kcal}} = \frac{Q}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = \frac{3754.9999999999995 \, \text{cal}}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = 3.7549999999999994 \, \text{kcal} \][/tex]
Therefore, the amount of heat that must be added to raise the temperature of the cup of coffee from 20.5°C to 95.6°C is approximately 3.755 kcal.
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy added (in calories),
- [tex]\( m \)[/tex] is the mass of the coffee (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in cal/g.°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given the data:
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.5°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 95.6°C
- Volume of coffee = 50.0 mL
- Density of coffee = 1.00 g/mL
- Specific heat capacity ([tex]\( c \)[/tex]) = 1 cal/g.°C
First, we determine the mass of the coffee, which is equal to its volume times its density:
[tex]\[ m = 50.0 \, \text{mL} \times 1.00 \, \text{g/mL} = 50.0 \, \text{g} \][/tex]
Next, we calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 95.6°C - 20.5°C \][/tex]
[tex]\[ \Delta T = 75.1°C \][/tex]
Now, we can calculate the heat energy added ([tex]\( Q \)[/tex]) using the formula:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
[tex]\[ Q = 50.0 \, \text{g} \times 1 \, \text{cal/g.°C} \times 75.1°C \][/tex]
[tex]\[ Q = 3754.9999999999995 \, \text{cal} \][/tex]
Finally, we convert the heat energy from calories to kilocalories (since 1 kcal = 1000 cal):
[tex]\[ Q_{\text{kcal}} = \frac{Q}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = \frac{3754.9999999999995 \, \text{cal}}{1000} \][/tex]
[tex]\[ Q_{\text{kcal}} = 3.7549999999999994 \, \text{kcal} \][/tex]
Therefore, the amount of heat that must be added to raise the temperature of the cup of coffee from 20.5°C to 95.6°C is approximately 3.755 kcal.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.