Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let’s define functions that have the specified properties: varying degrees and at least one zero with a multiplicity of 2.
### Function 1: Degree 2
We want a quadratic function (degree 2) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( f(x) = (x - 2)^2 \)[/tex]
This function has a zero at [tex]\( x = 2 \)[/tex] with a multiplicity of 2. If you expand it:
[tex]\[ f(x) = (x - 2)(x - 2) = x^2 - 4x + 4 \][/tex]
### Function 2: Degree 3
We want a cubic function (degree 3) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
This function has a zero at [tex]\( x = -1 \)[/tex] with a multiplicity of 2 and another zero at [tex]\( x = 3 \)[/tex]. If you expand it:
[tex]\[ g(x) = (x + 1)(x + 1)(x - 3) = (x^2 + 2x + 1)(x - 3) \][/tex]
### Function 3: Degree 4
We want a quartic function (degree 4) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
This function has a zero at [tex]\( x = 4 \)[/tex] with a multiplicity of 2, another zero at [tex]\( x = -2 \)[/tex], and another zero at [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ h(x) = (x - 4)(x - 4)(x + 2)(x - 1) \][/tex]
### Function 4: Degree 5
We want a quintic function (degree 5) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
This function has a zero at [tex]\( x = 5 \)[/tex] with a multiplicity of 2, and additional zeros at [tex]\( x = -3 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ j(x) = (x - 5)(x - 5)(x + 3)(x - 2)(x + 1) \][/tex]
To summarize, the functions with the specific degrees and zeros with multiplicities of 2 are:
1. [tex]\( f(x) = (x - 2)^2 \)[/tex]
2. [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
3. [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
4. [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
These functions fulfill the conditions of having at least one zero with a multiplicity of 2 and ranging in degrees from 2 to 5.
### Function 1: Degree 2
We want a quadratic function (degree 2) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( f(x) = (x - 2)^2 \)[/tex]
This function has a zero at [tex]\( x = 2 \)[/tex] with a multiplicity of 2. If you expand it:
[tex]\[ f(x) = (x - 2)(x - 2) = x^2 - 4x + 4 \][/tex]
### Function 2: Degree 3
We want a cubic function (degree 3) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
This function has a zero at [tex]\( x = -1 \)[/tex] with a multiplicity of 2 and another zero at [tex]\( x = 3 \)[/tex]. If you expand it:
[tex]\[ g(x) = (x + 1)(x + 1)(x - 3) = (x^2 + 2x + 1)(x - 3) \][/tex]
### Function 3: Degree 4
We want a quartic function (degree 4) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
This function has a zero at [tex]\( x = 4 \)[/tex] with a multiplicity of 2, another zero at [tex]\( x = -2 \)[/tex], and another zero at [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ h(x) = (x - 4)(x - 4)(x + 2)(x - 1) \][/tex]
### Function 4: Degree 5
We want a quintic function (degree 5) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
This function has a zero at [tex]\( x = 5 \)[/tex] with a multiplicity of 2, and additional zeros at [tex]\( x = -3 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ j(x) = (x - 5)(x - 5)(x + 3)(x - 2)(x + 1) \][/tex]
To summarize, the functions with the specific degrees and zeros with multiplicities of 2 are:
1. [tex]\( f(x) = (x - 2)^2 \)[/tex]
2. [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
3. [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
4. [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
These functions fulfill the conditions of having at least one zero with a multiplicity of 2 and ranging in degrees from 2 to 5.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.