Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let’s define functions that have the specified properties: varying degrees and at least one zero with a multiplicity of 2.
### Function 1: Degree 2
We want a quadratic function (degree 2) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( f(x) = (x - 2)^2 \)[/tex]
This function has a zero at [tex]\( x = 2 \)[/tex] with a multiplicity of 2. If you expand it:
[tex]\[ f(x) = (x - 2)(x - 2) = x^2 - 4x + 4 \][/tex]
### Function 2: Degree 3
We want a cubic function (degree 3) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
This function has a zero at [tex]\( x = -1 \)[/tex] with a multiplicity of 2 and another zero at [tex]\( x = 3 \)[/tex]. If you expand it:
[tex]\[ g(x) = (x + 1)(x + 1)(x - 3) = (x^2 + 2x + 1)(x - 3) \][/tex]
### Function 3: Degree 4
We want a quartic function (degree 4) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
This function has a zero at [tex]\( x = 4 \)[/tex] with a multiplicity of 2, another zero at [tex]\( x = -2 \)[/tex], and another zero at [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ h(x) = (x - 4)(x - 4)(x + 2)(x - 1) \][/tex]
### Function 4: Degree 5
We want a quintic function (degree 5) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
This function has a zero at [tex]\( x = 5 \)[/tex] with a multiplicity of 2, and additional zeros at [tex]\( x = -3 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ j(x) = (x - 5)(x - 5)(x + 3)(x - 2)(x + 1) \][/tex]
To summarize, the functions with the specific degrees and zeros with multiplicities of 2 are:
1. [tex]\( f(x) = (x - 2)^2 \)[/tex]
2. [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
3. [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
4. [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
These functions fulfill the conditions of having at least one zero with a multiplicity of 2 and ranging in degrees from 2 to 5.
### Function 1: Degree 2
We want a quadratic function (degree 2) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( f(x) = (x - 2)^2 \)[/tex]
This function has a zero at [tex]\( x = 2 \)[/tex] with a multiplicity of 2. If you expand it:
[tex]\[ f(x) = (x - 2)(x - 2) = x^2 - 4x + 4 \][/tex]
### Function 2: Degree 3
We want a cubic function (degree 3) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
This function has a zero at [tex]\( x = -1 \)[/tex] with a multiplicity of 2 and another zero at [tex]\( x = 3 \)[/tex]. If you expand it:
[tex]\[ g(x) = (x + 1)(x + 1)(x - 3) = (x^2 + 2x + 1)(x - 3) \][/tex]
### Function 3: Degree 4
We want a quartic function (degree 4) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
This function has a zero at [tex]\( x = 4 \)[/tex] with a multiplicity of 2, another zero at [tex]\( x = -2 \)[/tex], and another zero at [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ h(x) = (x - 4)(x - 4)(x + 2)(x - 1) \][/tex]
### Function 4: Degree 5
We want a quintic function (degree 5) that has at least one zero with a multiplicity of 2.
- Function Notation: [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
This function has a zero at [tex]\( x = 5 \)[/tex] with a multiplicity of 2, and additional zeros at [tex]\( x = -3 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( x = 1 \)[/tex]. If you expand it:
[tex]\[ j(x) = (x - 5)(x - 5)(x + 3)(x - 2)(x + 1) \][/tex]
To summarize, the functions with the specific degrees and zeros with multiplicities of 2 are:
1. [tex]\( f(x) = (x - 2)^2 \)[/tex]
2. [tex]\( g(x) = (x + 1)^2(x - 3) \)[/tex]
3. [tex]\( h(x) = (x - 4)^2(x + 2)(x - 1) \)[/tex]
4. [tex]\( j(x) = (x - 5)^2(x + 3)(x - 2)(x + 1) \)[/tex]
These functions fulfill the conditions of having at least one zero with a multiplicity of 2 and ranging in degrees from 2 to 5.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.