Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The isosceles triangle theorem is an essential concept in geometry. This theorem states that if two sides of a triangle are congruent (that is, they have the same length), then the angles opposite those sides are congruent as well.
Here is a step-by-step explanation:
1. Identify the Isosceles Triangle:
- An isosceles triangle is one that has at least two sides that are of equal length. Let’s consider a triangle [tex]\( \triangle ABC \)[/tex] with sides [tex]\( AB \)[/tex] and [tex]\( AC \)[/tex] being equal ([tex]\( AB = AC \)[/tex]).
2. Isosceles Triangle Theorem:
- According to the isosceles triangle theorem, the angles opposite these congruent sides must also be equal. In [tex]\( \triangle ABC \)[/tex]:
- The angle opposite side [tex]\( AB \)[/tex] is [tex]\( \angle C \)[/tex].
- The angle opposite side [tex]\( AC \)[/tex] is [tex]\( \angle B \)[/tex].
- Therefore, [tex]\( \angle B = \angle C \)[/tex].
3. Check the Options:
- Option A: The angles are congruent.
- Option B: The angles are complementary. Complementary angles are two angles whose measures add up to 90°.
- Option C: The angles are supplementary. Supplementary angles are two angles whose measures add up to 180°.
- Option D: The angles are proportional. This would mean that the angles have a constant ratio, which isn't necessarily true for angles in isosceles triangles in this context.
4. Correct Answer:
- The angles opposite the two congruent sides are equal in measure, which matches the definition of congruent angles.
Therefore, the correct answer is:
OA. congruent.
Here is a step-by-step explanation:
1. Identify the Isosceles Triangle:
- An isosceles triangle is one that has at least two sides that are of equal length. Let’s consider a triangle [tex]\( \triangle ABC \)[/tex] with sides [tex]\( AB \)[/tex] and [tex]\( AC \)[/tex] being equal ([tex]\( AB = AC \)[/tex]).
2. Isosceles Triangle Theorem:
- According to the isosceles triangle theorem, the angles opposite these congruent sides must also be equal. In [tex]\( \triangle ABC \)[/tex]:
- The angle opposite side [tex]\( AB \)[/tex] is [tex]\( \angle C \)[/tex].
- The angle opposite side [tex]\( AC \)[/tex] is [tex]\( \angle B \)[/tex].
- Therefore, [tex]\( \angle B = \angle C \)[/tex].
3. Check the Options:
- Option A: The angles are congruent.
- Option B: The angles are complementary. Complementary angles are two angles whose measures add up to 90°.
- Option C: The angles are supplementary. Supplementary angles are two angles whose measures add up to 180°.
- Option D: The angles are proportional. This would mean that the angles have a constant ratio, which isn't necessarily true for angles in isosceles triangles in this context.
4. Correct Answer:
- The angles opposite the two congruent sides are equal in measure, which matches the definition of congruent angles.
Therefore, the correct answer is:
OA. congruent.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.