Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine how fast the radius of the circle is changing when the oil is spilling at a rate of 10 cm²/sec and the radius is 5 cm, we can apply calculus and related rates concepts.
1. Understanding the Problem:
- We are given the rate at which the area of the circle is changing, [tex]\( \frac{dA}{dt} = 10 \)[/tex] cm²/sec.
- We are asked to determine how fast the radius [tex]\( r \)[/tex] is changing when [tex]\( r = 5 \)[/tex] cm.
2. Formulating the Problem:
- The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
- To find how the radius is changing over time, we differentiate both sides of this equation with respect to time [tex]\( t \)[/tex]:
[tex]\[ \frac{dA}{dt} = \frac{d}{dt}(\pi r^2) \][/tex]
3. Applying Differentiation:
- Differentiating [tex]\( A = \pi r^2 \)[/tex] with respect to time [tex]\( t \)[/tex], using the chain rule, we get:
[tex]\[ \frac{dA}{dt} = 2\pi r \frac{dr}{dt} \][/tex]
- Here, [tex]\( \frac{dA}{dt} \)[/tex] is the rate of change of the area (given as 10 cm²/sec), [tex]\( r \)[/tex] is the radius (given as 5 cm), and [tex]\( \frac{dr}{dt} \)[/tex] is the rate at which the radius is changing, which we need to determine.
4. Solving for [tex]\( \frac{dr}{dt} \)[/tex]:
- Rearrange the formula to solve for [tex]\( \frac{dr}{dt} \)[/tex]:
[tex]\[ \frac{dr}{dt} = \frac{\frac{dA}{dt}}{2\pi r} \][/tex]
5. Substituting Known Values:
- Substitute the known values [tex]\( \frac{dA}{dt} = 10 \)[/tex] cm²/sec and [tex]\( r = 5 \)[/tex] cm into the equation:
[tex]\[ \frac{dr}{dt} = \frac{10}{2\pi \cdot 5} \][/tex]
[tex]\[ \frac{dr}{dt} = \frac{10}{10\pi} \][/tex]
[tex]\[ \frac{dr}{dt} = \frac{1}{\pi} \][/tex]
6. Interpreting the Result:
- The rate of change of the radius when the radius is 5 cm is:
[tex]\[ \frac{dr}{dt} = \frac{1}{\pi} \text{ cm/sec} \][/tex]
- Numerically, [tex]\( \frac{1}{\pi} \approx 0.318 \text{ cm/sec} \)[/tex].
Therefore, the radius of the circle is increasing at a rate of approximately 0.318 cm/sec when the radius is 5 cm.
1. Understanding the Problem:
- We are given the rate at which the area of the circle is changing, [tex]\( \frac{dA}{dt} = 10 \)[/tex] cm²/sec.
- We are asked to determine how fast the radius [tex]\( r \)[/tex] is changing when [tex]\( r = 5 \)[/tex] cm.
2. Formulating the Problem:
- The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
- To find how the radius is changing over time, we differentiate both sides of this equation with respect to time [tex]\( t \)[/tex]:
[tex]\[ \frac{dA}{dt} = \frac{d}{dt}(\pi r^2) \][/tex]
3. Applying Differentiation:
- Differentiating [tex]\( A = \pi r^2 \)[/tex] with respect to time [tex]\( t \)[/tex], using the chain rule, we get:
[tex]\[ \frac{dA}{dt} = 2\pi r \frac{dr}{dt} \][/tex]
- Here, [tex]\( \frac{dA}{dt} \)[/tex] is the rate of change of the area (given as 10 cm²/sec), [tex]\( r \)[/tex] is the radius (given as 5 cm), and [tex]\( \frac{dr}{dt} \)[/tex] is the rate at which the radius is changing, which we need to determine.
4. Solving for [tex]\( \frac{dr}{dt} \)[/tex]:
- Rearrange the formula to solve for [tex]\( \frac{dr}{dt} \)[/tex]:
[tex]\[ \frac{dr}{dt} = \frac{\frac{dA}{dt}}{2\pi r} \][/tex]
5. Substituting Known Values:
- Substitute the known values [tex]\( \frac{dA}{dt} = 10 \)[/tex] cm²/sec and [tex]\( r = 5 \)[/tex] cm into the equation:
[tex]\[ \frac{dr}{dt} = \frac{10}{2\pi \cdot 5} \][/tex]
[tex]\[ \frac{dr}{dt} = \frac{10}{10\pi} \][/tex]
[tex]\[ \frac{dr}{dt} = \frac{1}{\pi} \][/tex]
6. Interpreting the Result:
- The rate of change of the radius when the radius is 5 cm is:
[tex]\[ \frac{dr}{dt} = \frac{1}{\pi} \text{ cm/sec} \][/tex]
- Numerically, [tex]\( \frac{1}{\pi} \approx 0.318 \text{ cm/sec} \)[/tex].
Therefore, the radius of the circle is increasing at a rate of approximately 0.318 cm/sec when the radius is 5 cm.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.