Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the statement "If the equation of a function is a rational expression, the function is rational" is true or false, we need to understand the definition of a rational function and a rational expression.
### Definitions
1. Rational Expression: A rational expression is a ratio (or fraction) of two polynomials. Formally, an expression of the form [tex]\( \frac{P(x)}{Q(x)} \)[/tex], where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are polynomials, and [tex]\( Q(x) \neq 0 \)[/tex].
2. Rational Function: A rational function is a function that can be expressed as a ratio of two polynomials. Formally, [tex]\( f(x) = \frac{P(x)}{Q(x)} \)[/tex], where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are polynomials, and [tex]\( Q(x) \neq 0 \)[/tex].
### Explanation
- A rational function, by definition, is any function that can be expressed as the ratio of two polynomials.
- A rational expression is also defined as a ratio of two polynomials.
Since a rational function and a rational expression share the same requirement—they are both ratios of polynomials—it follows that if the equation of a function is a rational expression, then by definition, the function itself is a rational function.
### Conclusion
Given the definitions and the logical equivalence between rational expressions and rational functions, the statement is indeed true.
Answer:
A. True
### Definitions
1. Rational Expression: A rational expression is a ratio (or fraction) of two polynomials. Formally, an expression of the form [tex]\( \frac{P(x)}{Q(x)} \)[/tex], where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are polynomials, and [tex]\( Q(x) \neq 0 \)[/tex].
2. Rational Function: A rational function is a function that can be expressed as a ratio of two polynomials. Formally, [tex]\( f(x) = \frac{P(x)}{Q(x)} \)[/tex], where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are polynomials, and [tex]\( Q(x) \neq 0 \)[/tex].
### Explanation
- A rational function, by definition, is any function that can be expressed as the ratio of two polynomials.
- A rational expression is also defined as a ratio of two polynomials.
Since a rational function and a rational expression share the same requirement—they are both ratios of polynomials—it follows that if the equation of a function is a rational expression, then by definition, the function itself is a rational function.
### Conclusion
Given the definitions and the logical equivalence between rational expressions and rational functions, the statement is indeed true.
Answer:
A. True
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.