Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which scenario produces the given uniform probability model where there are five outcomes with each outcome having a probability of 20.0%, we'll analyze the given scenarios one by one.
### Scenario a: Rolling a six-sided number cube
- A six-sided number cube (traditional die) has six faces numbered from 1 to 6.
- The probability of landing on any one face is [tex]\( \frac{1}{6} \approx 16.67\% \)[/tex], since all outcomes are equally likely.
- We need five outcomes with each having a 20.0% probability.
- Since a six-sided die has six possible outcomes and none of them fit the required probability model, this scenario does not match our model.
### Scenario b: Randomly picking one of the numbers 1 through 10 from a hat
- When you randomly pick one number from ten possible numbers (1 through 10), each of the 10 numbers has an equal probability of being selected.
- The probability of selecting any one number from 10 numbers is [tex]\( \frac{1}{10} = 10.0\% \)[/tex].
- We need five outcomes with each having a 20.0% probability.
- Since there are ten possible outcomes and none of them fit the required probability model, this scenario does not match our model either.
### Conclusion
After analyzing both scenarios, neither the six-sided die nor randomly picking a number from 1 to 10 produces the uniform probability model with five outcomes, each having a 20.0% probability. Therefore, neither scenario a) nor scenario b) is correct.
### Scenario a: Rolling a six-sided number cube
- A six-sided number cube (traditional die) has six faces numbered from 1 to 6.
- The probability of landing on any one face is [tex]\( \frac{1}{6} \approx 16.67\% \)[/tex], since all outcomes are equally likely.
- We need five outcomes with each having a 20.0% probability.
- Since a six-sided die has six possible outcomes and none of them fit the required probability model, this scenario does not match our model.
### Scenario b: Randomly picking one of the numbers 1 through 10 from a hat
- When you randomly pick one number from ten possible numbers (1 through 10), each of the 10 numbers has an equal probability of being selected.
- The probability of selecting any one number from 10 numbers is [tex]\( \frac{1}{10} = 10.0\% \)[/tex].
- We need five outcomes with each having a 20.0% probability.
- Since there are ten possible outcomes and none of them fit the required probability model, this scenario does not match our model either.
### Conclusion
After analyzing both scenarios, neither the six-sided die nor randomly picking a number from 1 to 10 produces the uniform probability model with five outcomes, each having a 20.0% probability. Therefore, neither scenario a) nor scenario b) is correct.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.