Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve this step by step:
1. Identify the pattern in James' typing speed:
- At the end of the first month: 9 words per minute.
- At the end of the second month: 18 words per minute.
- At the end of the third month: 27 words per minute.
Observing these values, we can see that James' typing speed forms an arithmetic sequence (each term increases by the same amount).
2. Determine the common difference:
- From the first month to the second month: [tex]\(18 - 9 = 9\)[/tex]
- From the second month to the third month: [tex]\(27 - 18 = 9\)[/tex]
So, the common difference (denoted as [tex]\(d\)[/tex]) is 9 words per minute.
3. Formulate the general term of the arithmetic sequence:
The general formula for the n-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
where [tex]\(a_n\)[/tex] is the n-th term, [tex]\(a_1\)[/tex] is the first term, and [tex]\(d\)[/tex] is the common difference.
4. Apply the formula to find James' typing speed at the end of the fifth month:
- First term ([tex]\(a_1\)[/tex]) = 9 words per minute.
- Common difference ([tex]\(d\)[/tex]) = 9 words per minute.
- n = 5 (since we are asked about the fifth month).
Plugging these values into the formula gives us:
[tex]\[ a_5 = 9 + (5 - 1) \times 9 \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_5 = 9 + 4 \times 9 \][/tex]
Multiply:
[tex]\[ a_5 = 9 + 36 \][/tex]
Adding these together:
[tex]\[ a_5 = 45 \][/tex]
Therefore, at the end of five months, James could type 45 words per minute.
Thus, the correct answer is:
b. 45 words per minute.
1. Identify the pattern in James' typing speed:
- At the end of the first month: 9 words per minute.
- At the end of the second month: 18 words per minute.
- At the end of the third month: 27 words per minute.
Observing these values, we can see that James' typing speed forms an arithmetic sequence (each term increases by the same amount).
2. Determine the common difference:
- From the first month to the second month: [tex]\(18 - 9 = 9\)[/tex]
- From the second month to the third month: [tex]\(27 - 18 = 9\)[/tex]
So, the common difference (denoted as [tex]\(d\)[/tex]) is 9 words per minute.
3. Formulate the general term of the arithmetic sequence:
The general formula for the n-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
where [tex]\(a_n\)[/tex] is the n-th term, [tex]\(a_1\)[/tex] is the first term, and [tex]\(d\)[/tex] is the common difference.
4. Apply the formula to find James' typing speed at the end of the fifth month:
- First term ([tex]\(a_1\)[/tex]) = 9 words per minute.
- Common difference ([tex]\(d\)[/tex]) = 9 words per minute.
- n = 5 (since we are asked about the fifth month).
Plugging these values into the formula gives us:
[tex]\[ a_5 = 9 + (5 - 1) \times 9 \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_5 = 9 + 4 \times 9 \][/tex]
Multiply:
[tex]\[ a_5 = 9 + 36 \][/tex]
Adding these together:
[tex]\[ a_5 = 45 \][/tex]
Therefore, at the end of five months, James could type 45 words per minute.
Thus, the correct answer is:
b. 45 words per minute.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.