Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's tackle this problem step by step. We need to find the least number [tex]\( x \)[/tex] that, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively.
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.