Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's tackle this problem step by step. We need to find the least number [tex]\( x \)[/tex] that, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively.
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.