Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is the area of a parallelogram that has a base 5 inches longer and a height 5 inches taller than the parallelogram shown?
Responses


What Is The Area Of A Parallelogram That Has A Base 5 Inches Longer And A Height 5 Inches Taller Than The Parallelogram Shown Responses class=

Sagot :

Answer:

A = 260 in²

Step-by-step explanation:

The area (A) of a parallelogram is calculated as

• A = base × height

given bas is 5 inches longer than and 5 inches taller than the one shown, then

base = 15 + 5 = 20 inches and height = 8 + 5 = 13 inches , so

A = 20 × 13 = 260 in²

Answer:

260 in²

Step-by-step explanation:

The formula for the area of a parallelogram is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a parallelogram}}\\\\A=bh\\\\\textsf{where:}\\ \phantom{ww}\bullet\;\textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the base.}\\\phantom{ww}\bullet\;\textsf{$h$ is the perpendicular height from the base.}\end{array}}[/tex]

In this case, both the base and the height are 5 inches longer than those in the given parallelogram. Therefore, to find the base (b) and height (h) of the new parallelogram, add 5 inches to each:

[tex]b = 15 + 5 = 20\; \text{in} \\\\h = 8 + 5 = 13\; \text{in}[/tex]

Now, substitute the values of b and h into the area formula:

[tex]A=20 \times 13 \\\\ A = 260\; \rm in^2[/tex]

Therefore, the area of a parallelogram that has a base 5 inches longer and a height 5 inches taller than the parallelogram shown is:

[tex]\LARGE\boxed{\boxed{260 \; \rm in^2}}[/tex]