Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A beach ball has a diameter of 14 in. when it's inflated. What is its approximate volume? Use 3.14 to approximate pl and round to the nearest hundredth. Show your work. Thank you if so!

A Beach Ball Has A Diameter Of 14 In When Its Inflated What Is Its Approximate Volume Use 314 To Approximate Pl And Round To The Nearest Hundredth Show Your Wor class=

Sagot :

for your question. To calculate the approximate volume of the beach ball, we can use the formula for the volume of a sphere, which is V = (4/3)πr^3.

Given that the diameter of the beach ball is 14 inches, we can find the radius by dividing the diameter by 2: r = 14/2 = 7 inches.

Now, let's calculate the volume using the formula: V = (4/3)π(7^3).

V ≈ (4/3) × 3.14 × 7^3 ≈ 4.19 × 343 ≈ 1436.97 cubic inches.

Therefore, the approximate volume of the beach ball is 1436.97 cubic inches.

I hope this helps! If you have any more questions, feel free to ask.

Answer:

1436.03 cubic inches

Step-by-step explanation:

A beach ball is spherical in shape, and

radius = diameter / 2 = 14 / 2

= 7 in

Volume of a sphere =

[tex] \frac{4}{3}\pi {r}^{3} [/tex]

[tex] = \frac{4}{3} \times 3.14 \times {7}^{3} [/tex]

Volume of the beach ball = 1436.0267

Volume of the beach ball = 1436.03 cubic inches

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.