Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
91
Step-by-step explanation:
To find the total number of mucus people eliminated by the medicine, let's first observe the pattern in the number of mucus people entering the lungs each day:
- Day 1: 1 mucus person
- Day 2: 4 mucus people
- Day 3: 9 mucus people
- Day 4: 16 mucus people
Notice that each day, the number of new mucus people is a perfect square:
- Day 1: 1² = 1 mucus person
- Day 2: 2² = 4 mucus people
- Day 3: 3² = 9 mucus people
- Day 4: 4² = 16 mucus people
Therefore, the pattern rule for the number of new mucus people entering the lungs (aₙ) on the nth day is:
[tex]a_n = n^2[/tex]
The sigma notation that represents the sum of the number of mucus people entering the lungs each day from day 1 to day 6 is:
[tex]\displaystyle \sum_{n=1}^{6} n^2[/tex]
Expanding this notation, we get:
[tex]\displaystyle \sum_{n=1}^{6} n^2=1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2[/tex]
Calculate the sum:
[tex]\displaystyle \sum_{n=1}^{6} n^2= 1 + 4 + 9 + 16 + 25 + 36 \\\\\\ \sum_{n=1}^{6} n^2 = 91[/tex]
So, the medicine eliminates a total of 91 mucus people from the teacher's lungs.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.