Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the equation of a parabola with a focus and a directrix, follow these steps systematically:
1. Identify the given information:
- Focus: [tex]\( (4, -1) \)[/tex]
- Directrix: [tex]\( y = -5 \)[/tex]
2. Determine the vertex of the parabola:
- The vertex lies directly between the focus and the directrix along the y-axis.
- The y-coordinate of the vertex, [tex]\( y_{\text{vertex}} \)[/tex], is the average of the y-coordinate of the focus and the directrix:
[tex]\[ y_{\text{vertex}} = \frac{-1 + (-5)}{2} = \frac{-6}{2} = -3 \][/tex]
- Since the x-coordinate of the vertex is the same as the x-coordinate of the focus (since the focus lies directly above or below), the vertex is [tex]\( (4, -3) \)[/tex].
3. Determine the distance [tex]\( p \)[/tex]:
- The distance [tex]\( p \)[/tex] is the distance from the vertex to the focus or the vertex to the directrix (they are the same distance).
- [tex]\( p = |-1 - (-3)| = |-1 + 3| = 2 \)[/tex]
4. Formulate the equation of the parabola:
- The general form of the equation for a parabola that opens vertically is:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
where [tex]\( (h, k) \)[/tex] is the vertex and [tex]\( p \)[/tex] is the distance calculated above.
- Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = -3 \)[/tex], and [tex]\( p = 2 \)[/tex] into the equation:
[tex]\[ (x - 4)^2 = 4 \cdot 2 \cdot (y + 3) \][/tex]
[tex]\[ (x - 4)^2 = 8(y + 3) \][/tex]
5. Convert to standard form (optional):
- Expand the equation to get it in standard form:
[tex]\[(x - 4)^2 = 8(y + 3)\][/tex]
[tex]\[ (x - 4)^2 - 8(y + 3) = 0 \][/tex]
[tex]\[ (x - 4)^2 - 8y - 24 = 0 \][/tex]
The final equation of the parabola is:
[tex]\[ (x - 4)^2 = 8(y + 3) \][/tex]
Or in standard form:
[tex]\[ (x - 4)^2 - 8y - 24 = 0 \][/tex]
Alternatively:
[tex]\[ x^2 - 8x - 8y - 8 = 0 \][/tex]
These equations characterize the parabola with the given focus and directrix.
1. Identify the given information:
- Focus: [tex]\( (4, -1) \)[/tex]
- Directrix: [tex]\( y = -5 \)[/tex]
2. Determine the vertex of the parabola:
- The vertex lies directly between the focus and the directrix along the y-axis.
- The y-coordinate of the vertex, [tex]\( y_{\text{vertex}} \)[/tex], is the average of the y-coordinate of the focus and the directrix:
[tex]\[ y_{\text{vertex}} = \frac{-1 + (-5)}{2} = \frac{-6}{2} = -3 \][/tex]
- Since the x-coordinate of the vertex is the same as the x-coordinate of the focus (since the focus lies directly above or below), the vertex is [tex]\( (4, -3) \)[/tex].
3. Determine the distance [tex]\( p \)[/tex]:
- The distance [tex]\( p \)[/tex] is the distance from the vertex to the focus or the vertex to the directrix (they are the same distance).
- [tex]\( p = |-1 - (-3)| = |-1 + 3| = 2 \)[/tex]
4. Formulate the equation of the parabola:
- The general form of the equation for a parabola that opens vertically is:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
where [tex]\( (h, k) \)[/tex] is the vertex and [tex]\( p \)[/tex] is the distance calculated above.
- Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = -3 \)[/tex], and [tex]\( p = 2 \)[/tex] into the equation:
[tex]\[ (x - 4)^2 = 4 \cdot 2 \cdot (y + 3) \][/tex]
[tex]\[ (x - 4)^2 = 8(y + 3) \][/tex]
5. Convert to standard form (optional):
- Expand the equation to get it in standard form:
[tex]\[(x - 4)^2 = 8(y + 3)\][/tex]
[tex]\[ (x - 4)^2 - 8(y + 3) = 0 \][/tex]
[tex]\[ (x - 4)^2 - 8y - 24 = 0 \][/tex]
The final equation of the parabola is:
[tex]\[ (x - 4)^2 = 8(y + 3) \][/tex]
Or in standard form:
[tex]\[ (x - 4)^2 - 8y - 24 = 0 \][/tex]
Alternatively:
[tex]\[ x^2 - 8x - 8y - 8 = 0 \][/tex]
These equations characterize the parabola with the given focus and directrix.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.